1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
//! Remote Control (RMT) module driver.
//!
//! The RMT (Remote Control) module driver can be used to send infrared remote control
//! signals. Due to flexibility of RMT module, the driver can also be used to generate or receive
//! many other types of signals.
//!
//! This module is an abstraction around the [IDF RMT](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/rmt.html)
//! implementation. It is recommended to read before using this module.
//!
//! This is implementation currently supports transmission only.
//!
//! Not supported:
//! * Interrupts.
//! * Receiving.
//! * Change of config after initialisation.
//!
//! # Example
//!
//! ```
//! // Prepare the config.
//! let config = Config::new().clock_divider(1);
//!
//! // Retrieve the output pin and channel from peripherals.
//! let peripherals = Peripherals::take().unwrap();
//! let channel = peripherals.rmt.channel0;
//! let pin = peripherals.pins.gpio18;
//!
//! // Create an RMT transmitter.
//! let tx = TxRmtDriver::new(channel, pin, &config)?;
//!
//! // Prepare signal pulse signal to be sent.
//! let low = Pulse::new(PinState::Low, PulseTicks::new(10)?);
//! let high = Pulse::new(PinState::High, PulseTicks::new(10)?);
//! let mut signal = FixedLengthSignal::<2>::new();
//! signal.set(0, &(low, high))?;
//! signal.set(1, &(high, low))?;
//!
//! // Transmit the signal.
//! tx.start(signal)?;
//!```
//!
//! See the `examples/` folder of this repository for more.
//!
//! # Loading pulses
//! There are two ways of preparing pulse signal. [FixedLengthSignal] and [VariableLengthSignal]. These
//! implement the [Signal] trait.
//!
//! [FixedLengthSignal] lives on the stack and must have the items set in pairs of [Pulse]s. This is
//! due to the internal implementation of RMT, and const generics limitations.
//!
//! [VariableLengthSignal] allows you to use the heap and incrementally add pulse items without knowing the size
//! ahead of time.
use core::cell::UnsafeCell;
use core::marker::PhantomData;
use core::time::Duration;
use core::{ptr, slice};
#[cfg(feature = "alloc")]
extern crate alloc;
use esp_idf_sys::*;
use crate::gpio::InputPin;
use crate::gpio::OutputPin;
use crate::interrupt::InterruptType;
use crate::peripheral::Peripheral;
use crate::units::Hertz;
use config::ReceiveConfig;
use config::TransmitConfig;
pub use chip::*;
// Might not always be available in the generated `esp-idf-sys` bindings
const ERR_ERANGE: esp_err_t = 34;
const ERR_EOVERFLOW: esp_err_t = 139;
pub type RmtTransmitConfig = config::TransmitConfig;
pub type RmtReceiveConfig = config::ReceiveConfig;
/// A `Low` (0) or `High` (1) state for a pin.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum PinState {
Low,
High,
}
impl From<u32> for PinState {
fn from(state: u32) -> Self {
if state == 0 {
Self::Low
} else {
Self::High
}
}
}
/// A `Pulse` contains a pin state and a tick count, used in creating a [`Signal`].
///
/// The real time duration of a tick depends on the [`Config::clock_divider`] setting.
///
/// You can create a `Pulse` with a [`Duration`] by using [`Pulse::new_with_duration`].
///
/// # Example
/// ```rust
/// # use esp_idf_hal::rmt::PulseTicks;
/// let pulse = Pulse::new(PinState::High, PulseTicks::new(32));
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Pulse {
pub ticks: PulseTicks,
pub pin_state: PinState,
}
impl Pulse {
pub const fn zero() -> Self {
Self::new(PinState::Low, PulseTicks::zero())
}
pub const fn new(pin_state: PinState, ticks: PulseTicks) -> Self {
Pulse { pin_state, ticks }
}
/// Create a [`Pulse`] using a [`Duration`].
///
/// The ticks frequency, which depends on the clock divider set on the channel within a
/// [`Transmit`]. To get the frequency for the `ticks_hz` argument, use [`Transmit::counter_clock()`].
///
/// # Example
/// ```
/// # use esp_idf_sys::EspError;
/// # use esp_idf_hal::gpio::Output;
/// # use esp_idf_hal::rmt::Channel::Channel0;
/// # fn example() -> Result<(), EspError> {
/// # let peripherals = Peripherals::take()?;
/// # let led = peripherals.pins.gpio18.into_output()?;
/// # let channel = peripherals.rmt.channel0;
/// # let config = Config::new()?;
/// let tx = Transmit::new(led, channel, &config)?;
/// let ticks_hz = tx.counter_clock()?;
/// let pulse = Pulse::new_with_duration(ticks_hz, PinState::High, Duration::from_nanos(500))?;
/// # }
/// ```
pub fn new_with_duration(
ticks_hz: Hertz,
pin_state: PinState,
duration: &Duration,
) -> Result<Self, EspError> {
let ticks = PulseTicks::new_with_duration(ticks_hz, duration)?;
Ok(Self::new(pin_state, ticks))
}
}
impl Default for Pulse {
fn default() -> Self {
Self::zero()
}
}
/// Number of ticks, restricting the range to 0 to 32,767.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct PulseTicks(u16);
impl PulseTicks {
const MAX: u16 = 32767;
pub const fn zero() -> Self {
Self(0)
}
/// Use the maximum value of 32767.
pub const fn max() -> Self {
Self(Self::MAX)
}
/// Needs to be unsigned 15 bits: 0-32767 inclusive, otherwise an [ESP_ERR_INVALID_ARG] is
/// returned.
pub fn new(ticks: u16) -> Result<Self, EspError> {
if ticks > Self::MAX {
Err(EspError::from_infallible::<ESP_ERR_INVALID_ARG>())
} else {
Ok(Self(ticks))
}
}
/// Convert a `Duration` into `PulseTicks`.
///
/// See `Pulse::new_with_duration()` for details.
pub fn new_with_duration(ticks_hz: Hertz, duration: &Duration) -> Result<Self, EspError> {
Self::new(duration_to_ticks(ticks_hz, duration)?)
}
pub fn ticks(&self) -> u16 {
self.0
}
pub fn duration(&self, ticks_hz: Hertz) -> Result<Duration, EspError> {
ticks_to_duration(ticks_hz, self.ticks())
}
}
impl Default for PulseTicks {
fn default() -> Self {
Self::zero()
}
}
/// A utility to convert a duration into ticks, depending on the clock ticks.
pub fn duration_to_ticks(ticks_hz: Hertz, duration: &Duration) -> Result<u16, EspError> {
let ticks = duration
.as_nanos()
.checked_mul(u32::from(ticks_hz) as u128)
.ok_or_else(|| EspError::from(ERR_EOVERFLOW).unwrap())?
/ 1_000_000_000;
u16::try_from(ticks).map_err(|_| EspError::from(ERR_EOVERFLOW).unwrap())
}
/// A utility to convert ticks into duration, depending on the clock ticks.
pub fn ticks_to_duration(ticks_hz: Hertz, ticks: u16) -> Result<Duration, EspError> {
let duration = 1_000_000_000_u128
.checked_mul(ticks as u128)
.ok_or_else(|| EspError::from(ERR_EOVERFLOW).unwrap())?
/ u32::from(ticks_hz) as u128;
u64::try_from(duration)
.map(Duration::from_nanos)
.map_err(|_| EspError::from(ERR_EOVERFLOW).unwrap())
}
pub type TxRmtConfig = config::TransmitConfig;
pub type RxRmtConfig = config::ReceiveConfig;
/// Types used for configuring the [`rmt`][crate::rmt] module.
///
/// [`Config`] is used when creating a [`Transmit`][crate::rmt::Transmit] instance.
///
/// # Example
/// ```
/// # use esp_idf_hal::units::FromValueType;
/// let carrier = CarrierConfig::new()
/// .duty_percent(DutyPercent::new(50)?)
/// .frequency(611.Hz());
///
/// let config = Config::new()
/// .carrier(Some(carrier))
/// .looping(Loop::Endless)
/// .clock_divider(255);
///
/// ```
pub mod config {
use enumset::EnumSet;
use esp_idf_sys::{EspError, ESP_ERR_INVALID_ARG};
use super::PinState;
use crate::{
interrupt::InterruptType,
units::{FromValueType, Hertz},
};
/// A percentage from 0 to 100%, used to specify the duty percentage in [`CarrierConfig`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct DutyPercent(pub(super) u8);
impl DutyPercent {
/// Must be between 0 and 100, otherwise an error is returned.
pub fn new(v: u8) -> Result<Self, EspError> {
if v > 100 {
Err(EspError::from_infallible::<ESP_ERR_INVALID_ARG>())
} else {
Ok(Self(v))
}
}
}
/// Configuration for when enabling a carrier frequency.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct CarrierConfig {
/// Frequency of the carrier in Hz.
pub frequency: Hertz,
/// Level of the RMT output, when the carrier is applied.
pub carrier_level: PinState,
/// Duty cycle of the carrier signal in percent (%).
pub duty_percent: DutyPercent,
}
impl CarrierConfig {
pub fn new() -> Self {
Self {
frequency: 38.kHz().into(),
carrier_level: PinState::High,
duty_percent: DutyPercent(33),
}
}
#[must_use]
pub fn frequency(mut self, hz: Hertz) -> Self {
self.frequency = hz;
self
}
#[must_use]
pub fn carrier_level(mut self, state: PinState) -> Self {
self.carrier_level = state;
self
}
#[must_use]
pub fn duty_percent(mut self, duty: DutyPercent) -> Self {
self.duty_percent = duty;
self
}
}
impl Default for CarrierConfig {
/// Defaults from `<https://github.com/espressif/esp-idf/blob/master/components/driver/include/driver/rmt.h#L101>`
fn default() -> Self {
Self::new()
}
}
/// Configuration setting for looping a signal.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Loop {
None,
Endless,
#[cfg(any(
all(not(esp_idf_version_major = "4"), not(esp_idf_version_major = "5")),
all(esp_idf_version_major = "5", not(esp_idf_version_minor = "0")),
not(esp32)
))]
Count(u32),
}
/// Used when creating a [`Transmit`][crate::rmt::Transmit] instance.
#[derive(Debug, Clone)]
pub struct TransmitConfig {
pub clock_divider: u8,
pub mem_block_num: u8,
pub carrier: Option<CarrierConfig>,
// TODO: `loop` is taken. Maybe can change to `repeat` even though it doesn't match the IDF.
pub looping: Loop,
/// Enable and set the signal level on the output if idle.
pub idle: Option<PinState>,
/// Channel can work during APB clock scaling.
///
/// When set, RMT channel will take REF_TICK or XTAL as source clock. The benefit is, RMT
/// channel can continue work even when APB clock is changing.
pub aware_dfs: bool,
pub intr_flags: EnumSet<InterruptType>,
}
impl TransmitConfig {
pub fn new() -> Self {
Self {
aware_dfs: false,
mem_block_num: 1,
clock_divider: 80,
looping: Loop::None,
carrier: None,
idle: Some(PinState::Low),
intr_flags: EnumSet::<InterruptType>::empty(),
}
}
#[must_use]
pub fn aware_dfs(mut self, enable: bool) -> Self {
self.aware_dfs = enable;
self
}
#[must_use]
pub fn mem_block_num(mut self, mem_block_num: u8) -> Self {
self.mem_block_num = mem_block_num;
self
}
#[must_use]
pub fn clock_divider(mut self, divider: u8) -> Self {
self.clock_divider = divider;
self
}
#[must_use]
pub fn looping(mut self, looping: Loop) -> Self {
self.looping = looping;
self
}
#[must_use]
pub fn carrier(mut self, carrier: Option<CarrierConfig>) -> Self {
self.carrier = carrier;
self
}
#[must_use]
pub fn idle(mut self, idle: Option<PinState>) -> Self {
self.idle = idle;
self
}
#[must_use]
pub fn intr_flags(mut self, flags: EnumSet<InterruptType>) -> Self {
self.intr_flags = flags;
self
}
}
impl Default for TransmitConfig {
/// Defaults from `<https://github.com/espressif/esp-idf/blob/master/components/driver/include/driver/rmt.h#L101>`
fn default() -> Self {
Self::new()
}
}
/// Used when creating a [`Receive`][crate::rmt::Receive] instance.
#[derive(Debug, Clone)]
pub struct ReceiveConfig {
pub clock_divider: u8,
pub mem_block_num: u8,
pub idle_threshold: u16,
pub filter_ticks_thresh: u8,
pub filter_en: bool,
pub carrier: Option<CarrierConfig>,
pub intr_flags: EnumSet<InterruptType>,
}
impl ReceiveConfig {
pub fn new() -> Self {
Self::default()
}
#[must_use]
pub fn clock_divider(mut self, divider: u8) -> Self {
self.clock_divider = divider;
self
}
#[must_use]
pub fn mem_block_num(mut self, mem_block_num: u8) -> Self {
self.mem_block_num = mem_block_num;
self
}
#[must_use]
pub fn idle_threshold(mut self, threshold: u16) -> Self {
self.idle_threshold = threshold;
self
}
#[must_use]
pub fn filter_ticks_thresh(mut self, threshold: u8) -> Self {
self.filter_ticks_thresh = threshold;
self
}
#[must_use]
pub fn filter_en(mut self, enable: bool) -> Self {
self.filter_en = enable;
self
}
#[must_use]
pub fn carrier(mut self, carrier: Option<CarrierConfig>) -> Self {
self.carrier = carrier;
self
}
#[must_use]
pub fn intr_flags(mut self, flags: EnumSet<InterruptType>) -> Self {
self.intr_flags = flags;
self
}
}
impl Default for ReceiveConfig {
/// Defaults from `<https://github.com/espressif/esp-idf/blob/master/components/driver/include/driver/rmt.h#L110>`
fn default() -> Self {
Self {
clock_divider: 80, // one microsecond clock period
mem_block_num: 1, // maximum of 448 rmt items can be captured (mem_block_num=0 will have max 512 rmt items)
idle_threshold: 12000, // 1.2 milliseconds, pulse greater than this will generate interrupt
filter_ticks_thresh: 100, // 100 microseconds, pulses less than this will be ignored
filter_en: true,
carrier: None,
intr_flags: EnumSet::<InterruptType>::empty(),
}
}
}
}
/// The RMT transmitter driver.
///
/// Use [`TxRmtDriver::start()`] or [`TxRmtDriver::start_blocking()`] to transmit pulses.
///
/// See the [rmt module][crate::rmt] for more information.
pub struct TxRmtDriver<'d> {
channel: u8,
_p: PhantomData<&'d mut ()>,
}
impl<'d> TxRmtDriver<'d> {
/// Initialise the rmt module with the specified pin, channel and configuration.
///
/// To uninstall the driver just drop it.
///
/// Internally this calls `rmt_config()` and `rmt_driver_install()`.
pub fn new<C: RmtChannel>(
_channel: impl Peripheral<P = C> + 'd,
pin: impl Peripheral<P = impl OutputPin> + 'd,
config: &TransmitConfig,
) -> Result<Self, EspError> {
crate::into_ref!(pin);
let mut flags = 0;
if config.aware_dfs {
flags |= RMT_CHANNEL_FLAGS_AWARE_DFS;
}
let carrier_en = config.carrier.is_some();
let carrier = config.carrier.unwrap_or_default();
let sys_config = rmt_config_t {
rmt_mode: rmt_mode_t_RMT_MODE_TX,
channel: C::channel(),
gpio_num: pin.pin(),
clk_div: config.clock_divider,
mem_block_num: config.mem_block_num,
flags,
__bindgen_anon_1: rmt_config_t__bindgen_ty_1 {
tx_config: rmt_tx_config_t {
carrier_en,
carrier_freq_hz: carrier.frequency.into(),
carrier_level: carrier.carrier_level as u32,
carrier_duty_percent: carrier.duty_percent.0,
idle_output_en: config.idle.is_some(),
idle_level: config.idle.map(|i| i as u32).unwrap_or(0),
loop_en: config.looping != config::Loop::None,
#[cfg(any(
all(not(esp_idf_version_major = "4"), not(esp_idf_version_major = "5")),
all(esp_idf_version_major = "5", not(esp_idf_version_minor = "0")),
not(esp32)
))]
loop_count: match config.looping {
config::Loop::Count(count) if count > 0 && count < 1024 => count,
_ => 0,
},
},
},
};
unsafe {
esp!(rmt_config(&sys_config))?;
esp!(rmt_driver_install(
C::channel(),
0,
InterruptType::to_native(config.intr_flags) as _
))?;
}
Ok(Self {
channel: C::channel() as _,
_p: PhantomData,
})
}
/// Get speed of the channel’s internal counter clock.
///
/// This calls [rmt_get_counter_clock()][rmt_get_counter_clock]
/// internally. It is used for calculating the number of ticks per second for pulses.
///
/// See [Pulse::new_with_duration()].
///
/// [rmt_get_counter_clock]: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/rmt.html#_CPPv421rmt_get_counter_clock13rmt_channel_tP8uint32_t
pub fn counter_clock(&self) -> Result<Hertz, EspError> {
let mut ticks_hz: u32 = 0;
esp!(unsafe { rmt_get_counter_clock(self.channel(), &mut ticks_hz) })?;
Ok(ticks_hz.into())
}
/// Start sending the given signal without blocking.
///
/// `signal` is captured for safety so that the user can't change the data while transmitting.
pub fn start<S>(&mut self, signal: S) -> Result<(), EspError>
where
S: Signal,
{
self.write_items(&signal, false)
}
/// Start sending the given signal while blocking.
pub fn start_blocking<S>(&mut self, signal: &S) -> Result<(), EspError>
where
S: Signal + ?Sized,
{
self.write_items(signal, true)
}
fn write_items<S>(&mut self, signal: &S, block: bool) -> Result<(), EspError>
where
S: Signal + ?Sized,
{
let items = signal.as_slice();
esp!(unsafe { rmt_write_items(self.channel(), items.as_ptr(), items.len() as i32, block) })
}
/// Transmit all items in `iter` without blocking.
///
/// Note that this requires `iter` to be [`Box`]ed for an allocation free version see [`Self::start_iter_blocking`].
///
/// ### Warning
///
/// Iteration of `iter` happens inside an interrupt handler so beware of side-effects
/// that don't work in interrupt handlers. Iteration must also be fast so that there
/// are no time-gaps between successive transmissions where the perhipheral has to
/// wait for items. This can cause weird behavior and can be counteracted with
/// increasing [`Config::mem_block_num`] or making iteration more efficient.
#[cfg(feature = "alloc")]
pub fn start_iter<T>(&mut self, iter: T) -> Result<(), EspError>
where
T: Iterator<Item = Symbol> + Send + 'static,
{
let iter = alloc::boxed::Box::new(UnsafeCell::new(iter));
unsafe {
esp!(rmt_translator_init(
self.channel(),
Some(Self::translate_iterator::<T, true>),
))?;
esp!(rmt_write_sample(
self.channel(),
alloc::boxed::Box::leak(iter) as *const _ as _,
1,
false
))
}
}
/// Transmit all items in `iter`, blocking until all items are transmitted.
///
/// This method does not require any allocations since the thread is paused until all
/// items are transmitted. The iterator lives on the stack and will be dropped after
/// all items are written and before this method returns.
///
/// ### Warning
///
/// Iteration of `iter` happens inside an interrupt handler so beware of side-effects
/// that don't work in interrupt handlers. Iteration must also be fast so that there
/// are no time-gaps between successive transmissions where the perhipheral has to
/// wait for items. This can cause weird behavior and can be counteracted with
/// increasing [`Config::mem_block_num`] or making iteration more efficient.
pub fn start_iter_blocking<T>(&mut self, iter: T) -> Result<(), EspError>
where
T: Iterator<Item = Symbol> + Send,
{
let iter = UnsafeCell::new(iter);
unsafe {
// TODO: maybe use a separate struct so that we don't have to do this when
// transmitting the same iterator type.
esp!(rmt_translator_init(
self.channel(),
Some(Self::translate_iterator::<T, false>),
))?;
esp!(rmt_write_sample(
self.channel(),
&iter as *const _ as _,
24,
true
))
}
}
/// The translator that turns an iterator into `rmt_item32_t` elements. Most of the
/// magic happens here.
///
/// The general idea is that we can fill a buffer (`dest`) of `rmt_item32_t` items of
/// length `wanted_num` with the items that we get from the iterator. Then we can tell
/// the peripheral driver how many items we filled in by setting `item_num`. The
/// driver will call this function over-and-over until `translated_size` is equal to
/// `src_size` so when the iterator returns [`None`] we set `translated_size` to
/// `src_size` to signal that there are no more items to translate.
///
/// The compiler will generate this function for every different call to
/// [`Self::start_iter_blocking`] and [`Self::start_iter`] with different iterator
/// types because of the type parameter. This is done to avoid the double indirection
/// that we'd have to do when using a trait object since references to trait objects
/// are fat-pointers (2 `usize` wide) and we only get a narrow pointer (`src`).
/// Using a trait object has the addional overhead that every call to `Iterator::next`
/// would also be indirect (through the `vtable`) and couldn't be inlined.
unsafe extern "C" fn translate_iterator<T, const DEALLOC_ITER: bool>(
src: *const core::ffi::c_void,
mut dest: *mut rmt_item32_t,
src_size: usize,
wanted_num: usize,
translated_size: *mut usize,
item_num: *mut usize,
) where
T: Iterator<Item = Symbol>,
{
// An `UnsafeCell` is needed here because we're casting a `*const` to a `*mut`.
// Safe because this is the only existing reference.
let iter = &mut *UnsafeCell::raw_get(src as *const UnsafeCell<T>);
let mut i = 0;
let finished = loop {
if i >= wanted_num {
break 0;
}
if let Some(item) = iter.next() {
*dest = item.0;
dest = dest.add(1);
i += 1;
} else {
// Only deallocate the iter if the const generics argument is `true`
// otherwise we could be deallocating stack memory.
#[cfg(feature = "alloc")]
if DEALLOC_ITER {
drop(alloc::boxed::Box::from_raw(iter));
}
break src_size;
}
};
*item_num = i;
*translated_size = finished;
}
/// Stop transmitting.
pub fn stop(&mut self) -> Result<(), EspError> {
esp!(unsafe { rmt_tx_stop(self.channel()) })
}
pub fn set_looping(&mut self, looping: config::Loop) -> Result<(), EspError> {
esp!(unsafe { rmt_set_tx_loop_mode(self.channel(), looping != config::Loop::None) })?;
#[cfg(not(any(esp32, esp32c2)))]
esp!(unsafe {
rmt_set_tx_loop_count(
self.channel(),
match looping {
config::Loop::Count(count) if count > 0 && count < 1024 => count,
_ => 0,
},
)
})?;
Ok(())
}
pub fn channel(&self) -> rmt_channel_t {
self.channel as _
}
}
impl<'d> Drop for TxRmtDriver<'d> {
/// Stop transmitting and release the driver.
fn drop(&mut self) {
self.stop().unwrap();
esp!(unsafe { rmt_driver_uninstall(self.channel()) }).unwrap();
}
}
unsafe impl<'d> Send for TxRmtDriver<'d> {}
/// Symbols
///
/// Represents a single pulse cycle symbol comprised of mark (high)
/// and space (low) periods in either order or a fixed level if both
/// halves have the same [`PinState`]. This is just a newtype over the
/// IDF's `rmt_item32_t` or `rmt_symbol_word_t` type.
#[derive(Clone, Copy)]
pub struct Symbol(rmt_item32_t);
impl Symbol {
/// Create a symbol from a pair of half-cycles.
pub fn new(level0: Pulse, level1: Pulse) -> Self {
let item = rmt_item32_t {
__bindgen_anon_1: rmt_item32_t__bindgen_ty_1 { val: 0 },
};
let mut this = Self(item);
this.update(level0, level1);
this
}
/// Mutate this symbol to store a different pair of half-cycles.
pub fn update(&mut self, level0: Pulse, level1: Pulse) {
// SAFETY: We're overriding all 32 bits, so it doesn't matter what was here before.
let inner = unsafe { &mut self.0.__bindgen_anon_1.__bindgen_anon_1 };
inner.set_level0(level0.pin_state as u32);
inner.set_duration0(level0.ticks.0 as u32);
inner.set_level1(level1.pin_state as u32);
inner.set_duration1(level1.ticks.0 as u32);
}
}
/// Signal storage for [`Transmit`] in a format ready for the RMT driver.
pub trait Signal {
fn as_slice(&self) -> &[rmt_item32_t];
}
impl Signal for Symbol {
fn as_slice(&self) -> &[rmt_item32_t] {
slice::from_ref(&self.0)
}
}
impl Signal for [rmt_item32_t] {
fn as_slice(&self) -> &[rmt_item32_t] {
self
}
}
/// Stack based signal storage for an RMT signal.
///
/// Use this if you know the length of the pulses ahead of time and prefer to use the stack.
///
/// Internally RMT uses pairs of pulses as part of its data structure. This implementation
/// you need to [`set`][FixedLengthSignal::set()] a two [`Pulse`]s for each index.
///
/// ```rust
/// # use esp_idf_hal::rmt::FixedLengthSignal;
/// let p1 = Pulse::new(PinState::High, PulseTicks::new(10));
/// let p2 = Pulse::new(PinState::Low, PulseTicks::new(11));
/// let p3 = Pulse::new(PinState::High, PulseTicks::new(12));
/// let p4 = Pulse::new(PinState::Low, PulseTicks::new(13));
///
/// let mut s = FixedLengthSignal::new();
/// s.set(0, &(p1, p2));
/// s.set(1, &(p3, p4));
/// ```
#[derive(Clone)]
pub struct FixedLengthSignal<const N: usize>([rmt_item32_t; N]);
#[cfg(all(esp_idf_version_major = "4", esp32))]
#[allow(non_camel_case_types)]
type rmt_item32_t__bindgen_ty_1 = rmt_item32_s__bindgen_ty_1;
#[cfg(all(esp_idf_version_major = "4", esp32))]
#[allow(non_camel_case_types)]
#[allow(dead_code)]
type rmt_item32_t__bindgen_ty_1__bindgen_ty_1 = rmt_item32_s__bindgen_ty_1__bindgen_ty_1;
impl<const N: usize> FixedLengthSignal<N> {
/// Creates a new array of size `<N>`, where the number of pulses is `N * 2`.
pub fn new() -> Self {
Self(
[rmt_item32_t {
__bindgen_anon_1: rmt_item32_t__bindgen_ty_1 {
// Quick way to set all 32 bits to zero, instead of using `__bindgen_anon_1`.
val: 0,
},
}; N],
)
}
/// Set a pair of [`Pulse`]s at a position in the array.
pub fn set(&mut self, index: usize, pair: &(Pulse, Pulse)) -> Result<(), EspError> {
let item = self
.0
.get_mut(index)
.ok_or_else(|| EspError::from(ERR_ERANGE).unwrap())?;
let mut symbol = Symbol(*item);
symbol.update(pair.0, pair.1);
*item = symbol.0;
Ok(())
}
}
impl<const N: usize> Signal for FixedLengthSignal<N> {
fn as_slice(&self) -> &[rmt_item32_t] {
&self.0
}
}
impl<const N: usize> Default for FixedLengthSignal<N> {
fn default() -> Self {
Self::new()
}
}
// TODO: impl<const N: usize> From<&[Pulse; N]> for StackSignal<{ (N + 1) / 2 }> {
// Implementing this caused the compiler to crash!
/// `Vec` heap based storage for an RMT signal.
///
/// Use this for when you don't know the final size of your signal data.
///
/// # Example
/// ```rust
/// let mut signal = VariableLengthSignal::new();
/// signal.push(Pulse::new(PinState::High, PulseTicks::new(10)));
/// signal.push(Pulse::new(PinState::Low, PulseTicks::new(9)));
/// ```
#[cfg(feature = "alloc")]
#[derive(Clone, Default)]
pub struct VariableLengthSignal {
items: alloc::vec::Vec<rmt_item32_t>,
// Items contain two pulses. Track if we're adding a new pulse to the first one (true) or if
// we're changing the second one (false).
next_item_is_new: bool,
}
#[cfg(feature = "alloc")]
impl VariableLengthSignal {
pub const fn new() -> Self {
Self {
items: alloc::vec::Vec::new(),
next_item_is_new: true,
}
}
/// Create a new [`VariableLengthSignal`] with a a given capacity. This is
/// more efficent than not specifying the capacity with `new( )` as the
/// memory manager only needs to allocate the underlying array once.
///
/// - `capacity` is the number of [`Pulse`]s which can be pushes before reallocating
pub fn with_capacity(capacity: usize) -> Self {
// half the size, rounding up, because each entry in the [`Vec`] holds upto 2 pulses each
let vec_size = (capacity + 1) / 2;
Self {
items: alloc::vec::Vec::with_capacity(vec_size),
next_item_is_new: true,
}
}
/// Add [`Pulse`]s to the end of the signal.
pub fn push<'p, I>(&mut self, pulses: I) -> Result<(), EspError>
where
I: IntoIterator<Item = &'p Pulse>,
{
for pulse in pulses {
if self.next_item_is_new {
let mut inner_item = rmt_item32_t__bindgen_ty_1__bindgen_ty_1::default();
inner_item.set_level0(pulse.pin_state as u32);
inner_item.set_duration0(pulse.ticks.0 as u32);
let item = rmt_item32_t {
__bindgen_anon_1: rmt_item32_t__bindgen_ty_1 {
__bindgen_anon_1: inner_item,
},
};
self.items.push(item);
} else {
// There should be at least one item in the vec.
let len = self.items.len();
let item = self.items.get_mut(len - 1).unwrap();
// SAFETY: This item was previously populated with the same union field.
let inner = unsafe { &mut item.__bindgen_anon_1.__bindgen_anon_1 };
inner.set_level1(pulse.pin_state as u32);
inner.set_duration1(pulse.ticks.0 as u32);
}
self.next_item_is_new = !self.next_item_is_new;
}
Ok(())
}
/// Delete all pulses.
pub fn clear(&mut self) {
self.next_item_is_new = true;
self.items.clear();
}
}
#[cfg(feature = "alloc")]
impl Signal for VariableLengthSignal {
fn as_slice(&self) -> &[rmt_item32_t] {
&self.items
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Receive {
Read(usize),
Overflow(usize),
Timeout,
}
/// The RMT receiver.
///
/// Use [`RxRmtDriver::start()`] to receive pulses.
///
/// See the [rmt module][crate::rmt] for more information.
pub struct RxRmtDriver<'d> {
channel: u8,
next_ringbuf_item: Option<(*mut rmt_item32_t, usize)>,
_p: PhantomData<&'d mut ()>,
}
impl<'d> RxRmtDriver<'d> {
/// Initialise the rmt module with the specified pin, channel and configuration.
///
/// To uninstall the driver just drop it.
///
/// Internally this calls `rmt_config()` and `rmt_driver_install()`.
pub fn new<C: RmtChannel>(
_channel: impl Peripheral<P = C> + 'd,
pin: impl Peripheral<P = impl InputPin> + 'd,
config: &ReceiveConfig,
ring_buf_size: usize,
) -> Result<Self, EspError> {
crate::into_ref!(pin);
#[cfg(not(any(esp32, esp32c2)))]
let carrier_en = config.carrier.is_some();
#[cfg(not(any(esp32, esp32c2)))]
let carrier = config.carrier.unwrap_or_default();
let sys_config = rmt_config_t {
rmt_mode: rmt_mode_t_RMT_MODE_RX,
channel: C::channel(),
gpio_num: pin.pin(),
clk_div: config.clock_divider,
mem_block_num: config.mem_block_num,
flags: 0,
__bindgen_anon_1: rmt_config_t__bindgen_ty_1 {
rx_config: rmt_rx_config_t {
idle_threshold: config.idle_threshold,
filter_ticks_thresh: config.filter_ticks_thresh,
filter_en: config.filter_en,
#[cfg(not(any(esp32, esp32c2)))]
rm_carrier: carrier_en,
#[cfg(not(any(esp32, esp32c2)))]
carrier_freq_hz: carrier.frequency.into(),
#[cfg(not(any(esp32, esp32c2)))]
carrier_level: carrier.carrier_level as u32,
#[cfg(not(any(esp32, esp32c2)))]
carrier_duty_percent: carrier.duty_percent.0,
},
},
};
unsafe {
esp!(rmt_config(&sys_config))?;
esp!(rmt_driver_install(
C::channel(),
ring_buf_size * 4,
InterruptType::to_native(config.intr_flags) as _
))?;
}
Ok(Self {
channel: C::channel() as _,
next_ringbuf_item: None,
_p: PhantomData,
})
}
pub fn channel(&self) -> rmt_channel_t {
self.channel as _
}
/// Start receiving
pub fn start(&self) -> Result<(), EspError> {
esp!(unsafe { rmt_rx_start(self.channel(), true) })
}
/// Stop receiving
pub fn stop(&self) -> Result<(), EspError> {
esp!(unsafe { rmt_rx_stop(self.channel()) })
}
pub fn receive(
&mut self,
buf: &mut [(Pulse, Pulse)],
ticks_to_wait: TickType_t,
) -> Result<Receive, EspError> {
if let Some(items) = self.fetch_ringbuf_next_item(ticks_to_wait)? {
if items.len() <= buf.len() {
for (index, item) in items.iter().enumerate() {
let item = unsafe { item.__bindgen_anon_1.__bindgen_anon_1 };
buf[index] = (
Pulse::new(
item.level0().into(),
PulseTicks::new(item.duration0().try_into().unwrap()).unwrap(),
),
Pulse::new(
item.level1().into(),
PulseTicks::new(item.duration1().try_into().unwrap()).unwrap(),
),
);
}
let len = items.len();
self.return_ringbuf_item()?;
Ok(Receive::Read(len))
} else {
Ok(Receive::Overflow(items.len()))
}
} else {
Ok(Receive::Timeout)
}
}
fn fetch_ringbuf_next_item(
&mut self,
ticks_to_wait: TickType_t,
) -> Result<Option<&[rmt_item32_t]>, EspError> {
if let Some((rmt_items, length)) = self.next_ringbuf_item {
Ok(Some(unsafe {
core::slice::from_raw_parts(rmt_items, length)
}))
} else {
let mut ringbuf_handle = ptr::null_mut();
esp!(unsafe { rmt_get_ringbuf_handle(self.channel(), &mut ringbuf_handle) })?;
let mut length = 0;
let rmt_items: *mut rmt_item32_t = unsafe {
xRingbufferReceive(ringbuf_handle.cast(), &mut length, ticks_to_wait).cast()
};
if rmt_items.is_null() {
Ok(None)
} else {
let length = length / 4;
self.next_ringbuf_item = Some((rmt_items, length));
Ok(Some(unsafe {
core::slice::from_raw_parts(rmt_items, length)
}))
}
}
}
fn return_ringbuf_item(&mut self) -> Result<(), EspError> {
let mut ringbuf_handle = ptr::null_mut();
esp!(unsafe { rmt_get_ringbuf_handle(self.channel(), &mut ringbuf_handle) })?;
if let Some((rmt_items, _)) = self.next_ringbuf_item.take() {
unsafe {
vRingbufferReturnItem(ringbuf_handle, rmt_items.cast());
}
} else {
unreachable!();
}
Ok(())
}
}
impl<'d> Drop for RxRmtDriver<'d> {
/// Stop receiving and release the driver.
fn drop(&mut self) {
self.stop().unwrap();
esp!(unsafe { rmt_driver_uninstall(self.channel()) }).unwrap();
}
}
unsafe impl<'d> Send for RxRmtDriver<'d> {}
mod chip {
use esp_idf_sys::*;
/// RMT peripheral channel.
pub trait RmtChannel {
fn channel() -> rmt_channel_t;
}
macro_rules! impl_channel {
($instance:ident: $channel:expr) => {
crate::impl_peripheral!($instance);
impl RmtChannel for $instance {
fn channel() -> rmt_channel_t {
$channel
}
}
};
}
// SOC_RMT_CHANNELS_PER_GROUP defines how many channels there are.
impl_channel!(CHANNEL0: rmt_channel_t_RMT_CHANNEL_0);
impl_channel!(CHANNEL1: rmt_channel_t_RMT_CHANNEL_1);
impl_channel!(CHANNEL2: rmt_channel_t_RMT_CHANNEL_2);
impl_channel!(CHANNEL3: rmt_channel_t_RMT_CHANNEL_3);
#[cfg(any(esp32, esp32s3))]
impl_channel!(CHANNEL4: rmt_channel_t_RMT_CHANNEL_4);
#[cfg(any(esp32, esp32s3))]
impl_channel!(CHANNEL5: rmt_channel_t_RMT_CHANNEL_5);
#[cfg(any(esp32, esp32s3))]
impl_channel!(CHANNEL6: rmt_channel_t_RMT_CHANNEL_6);
#[cfg(any(esp32, esp32s3))]
impl_channel!(CHANNEL7: rmt_channel_t_RMT_CHANNEL_7);
pub struct RMT {
pub channel0: CHANNEL0,
pub channel1: CHANNEL1,
pub channel2: CHANNEL2,
pub channel3: CHANNEL3,
#[cfg(any(esp32, esp32s3))]
pub channel4: CHANNEL4,
#[cfg(any(esp32, esp32s3))]
pub channel5: CHANNEL5,
#[cfg(any(esp32, esp32s3))]
pub channel6: CHANNEL6,
#[cfg(any(esp32, esp32s3))]
pub channel7: CHANNEL7,
}
impl RMT {
/// Creates a new instance of the RMT peripheral. Typically one wants
/// to use the instance [`rmt`](crate::peripherals::Peripherals::rmt) from
/// the device peripherals obtained via
/// [`peripherals::Peripherals::take()`](crate::peripherals::Peripherals::take()).
///
/// # Safety
///
/// It is safe to instantiate the RMT peripheral exactly one time.
/// Care has to be taken that this has not already been done elsewhere.
pub unsafe fn new() -> Self {
Self {
channel0: CHANNEL0::new(),
channel1: CHANNEL1::new(),
channel2: CHANNEL2::new(),
channel3: CHANNEL3::new(),
#[cfg(any(esp32, esp32s3))]
channel4: CHANNEL4::new(),
#[cfg(any(esp32, esp32s3))]
channel5: CHANNEL5::new(),
#[cfg(any(esp32, esp32s3))]
channel6: CHANNEL6::new(),
#[cfg(any(esp32, esp32s3))]
channel7: CHANNEL7::new(),
}
}
}
}