1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
//! Over The Air Updates (OTA)
//!
//! The OTA update mechanism allows a device to update itself based on data
//! received while the normal firmware is running (for example, over Wi-Fi or
//! Bluetooth.)

use core::cmp::min;
use core::fmt::Write;
use core::marker::PhantomData;
use core::mem;
use core::ptr;

use ::log::*;
use embedded_svc::ota::OtaUpdateFinished;

use embedded_svc::io;
use embedded_svc::ota::{FirmwareInfoLoader, Ota, OtaUpdate};

pub use embedded_svc::ota::{FirmwareInfo, LoadResult, Slot, SlotState, UpdateProgress};

use crate::sys::*;

use crate::io::EspIOError;
use crate::private::{common::*, cstr::*, mutex};

static TAKEN: mutex::Mutex<bool> = mutex::Mutex::new(false);

impl From<Newtype<&esp_app_desc_t>> for FirmwareInfo {
    fn from(app_desc: Newtype<&esp_app_desc_t>) -> Self {
        let app_desc = app_desc.0;

        let mut result = Self {
            version: unsafe { from_cstr_ptr(&app_desc.version as *const _) }
                .try_into()
                .unwrap(),
            signature: Some(heapless::Vec::from_slice(&app_desc.app_elf_sha256).unwrap()),
            released: "".try_into().unwrap(),
            description: Some(
                unsafe { from_cstr_ptr(&app_desc.project_name as *const _) }
                    .try_into()
                    .unwrap(),
            ),
            download_id: None,
        };

        write!(
            &mut result.released,
            "{} {}",
            unsafe { from_cstr_ptr(&app_desc.date as *const _) },
            unsafe { from_cstr_ptr(&app_desc.time as *const _) }
        )
        .unwrap();

        result
    }
}

pub struct EspFirmwareInfoLoader(heapless::Vec<u8, 512>);

impl EspFirmwareInfoLoader {
    pub const fn new() -> Self {
        Self(heapless::Vec::new())
    }

    pub fn load(&mut self, buf: &[u8]) -> Result<LoadResult, EspError> {
        if !self.is_loaded() {
            let remaining = self.0.capacity() - self.0.len();
            if remaining > 0 {
                self.0
                    .extend_from_slice(&buf[..min(buf.len(), remaining)])
                    .unwrap();
            }
        }

        Ok(if self.is_loaded() {
            LoadResult::Loaded
        } else {
            LoadResult::LoadMore
        })
    }

    pub fn is_loaded(&self) -> bool {
        self.0.len()
            >= mem::size_of::<esp_image_header_t>()
                + mem::size_of::<esp_image_segment_header_t>()
                + mem::size_of::<esp_app_desc_t>()
    }

    pub fn get_info(&self) -> Result<FirmwareInfo, EspError> {
        if self.is_loaded() {
            let app_desc_slice = &self.0[mem::size_of::<esp_image_header_t>()
                + mem::size_of::<esp_image_segment_header_t>()
                ..mem::size_of::<esp_image_header_t>()
                    + mem::size_of::<esp_image_segment_header_t>()
                    + mem::size_of::<esp_app_desc_t>()];

            let app_desc = unsafe {
                (app_desc_slice.as_ptr() as *const esp_app_desc_t)
                    .as_ref()
                    .unwrap()
            };
            Ok(Newtype(app_desc).into())
        } else {
            Err(EspError::from_infallible::<ESP_ERR_INVALID_SIZE>())
        }
    }
}

impl Default for EspFirmwareInfoLoader {
    fn default() -> Self {
        Self::new()
    }
}

impl io::ErrorType for EspFirmwareInfoLoader {
    type Error = EspIOError;
}

impl FirmwareInfoLoader for EspFirmwareInfoLoader {
    fn load(&mut self, buf: &[u8]) -> Result<LoadResult, Self::Error> {
        Ok(EspFirmwareInfoLoader::load(self, buf)?)
    }

    fn is_loaded(&self) -> bool {
        EspFirmwareInfoLoader::is_loaded(self)
    }

    fn get_info(&self) -> Result<FirmwareInfo, Self::Error> {
        Ok(EspFirmwareInfoLoader::get_info(self)?)
    }
}

#[derive(Debug)]
pub struct EspOtaUpdate<'a> {
    update_partition: *const esp_partition_t,
    update_handle: esp_ota_handle_t,
    _data: PhantomData<&'a mut ()>,
}

impl<'a> EspOtaUpdate<'a> {
    pub fn write(&mut self, buf: &[u8]) -> Result<(), EspError> {
        self.check_write()?;

        if !buf.is_empty() {
            esp!(unsafe { esp_ota_write(self.update_handle, buf.as_ptr() as _, buf.len() as _) })?;
        }

        Ok(())
    }

    pub fn flush(&mut self) -> Result<(), EspError> {
        self.check_write()?;

        Ok(())
    }

    pub fn finish(self) -> Result<EspOtaUpdateFinished<'a>, EspError> {
        self.check_write()?;

        esp!(unsafe { esp_ota_end(self.update_handle) })?;
        let update_partition = self.update_partition;

        // `Drop::drop` must not be called on `EspOtaUpdate` after the OTA handle has been
        // invalidated.
        mem::forget(self);

        Ok(EspOtaUpdateFinished {
            update_partition,
            _data: PhantomData,
        })
    }

    pub fn complete(self) -> Result<(), EspError> {
        self.check_write()?;

        esp!(unsafe { esp_ota_end(self.update_handle) })?;
        esp!(unsafe { esp_ota_set_boot_partition(self.update_partition) })?;

        // `Drop::drop` must not be called on `EspOtaUpdate` after the OTA handle has been
        // invalidated.
        mem::forget(self);

        Ok(())
    }

    pub fn abort(self) -> Result<(), EspError> {
        // The OTA update is aborted when `EspOtaUpdate` is dropped.
        Ok(())
    }

    fn check_write(&self) -> Result<(), EspError> {
        if !self.update_partition.is_null() {
            Ok(())
        } else {
            Err(EspError::from_infallible::<ESP_FAIL>())
        }
    }
}

impl Drop for EspOtaUpdate<'_> {
    fn drop(&mut self) {
        // SAFETY: `esp_ota_abort` can only fail if the provided OTA handle is invalid.
        //
        // 1) The only safe way to acquire an `EspOtaUpdate` is through `EspOta::initiate_update`
        //    which constructs the new instance using an OTA handle returned by `esp_ota_begin`.
        // 2) The methods which invalidate the OTA handle all call `mem::forget(self)`.
        //
        // This means that our API guarantees that the OTA handle contained in this struct is valid
        // and so calling this function will always be safe.
        unsafe { esp_ota_abort(self.update_handle) };
    }
}

#[derive(Debug)]
pub struct EspOtaUpdateFinished<'a> {
    update_partition: *const esp_partition_t,
    _data: PhantomData<&'a mut ()>,
}

impl<'a> EspOtaUpdateFinished<'a> {
    pub fn activate(self) -> Result<(), EspError> {
        esp!(unsafe { esp_ota_set_boot_partition(self.update_partition) })
    }
}

#[derive(Debug)]
pub struct EspOta(());

impl EspOta {
    pub fn new() -> Result<Self, EspError> {
        let mut taken = TAKEN.lock();

        if *taken {
            return Err(EspError::from_infallible::<ESP_ERR_INVALID_STATE>());
        }

        *taken = true;

        Ok(Self(()))
    }

    pub fn get_boot_slot(&self) -> Result<Slot, EspError> {
        self.get_slot(unsafe { esp_ota_get_boot_partition().as_ref().unwrap() })
    }

    pub fn get_running_slot(&self) -> Result<Slot, EspError> {
        self.get_slot(unsafe { esp_ota_get_running_partition().as_ref().unwrap() })
    }

    pub fn get_update_slot(&self) -> Result<Slot, EspError> {
        self.get_slot(unsafe {
            esp_ota_get_next_update_partition(ptr::null())
                .as_ref()
                .unwrap()
        })
    }

    pub fn get_last_invalid_slot(&self) -> Result<Option<Slot>, EspError> {
        if let Some(partition) = unsafe { esp_ota_get_last_invalid_partition().as_ref() } {
            Ok(Some(self.get_slot(partition)?))
        } else {
            Ok(None)
        }
    }

    pub fn is_factory_reset_supported(&self) -> Result<bool, EspError> {
        self.get_factory_partition()
            .map(|factory| !factory.is_null())
    }

    pub fn factory_reset(&mut self) -> Result<(), EspError> {
        let factory = self.get_factory_partition()?;

        esp!(unsafe { esp_ota_set_boot_partition(factory) })?;

        Ok(())
    }

    pub fn initiate_update(&mut self) -> Result<EspOtaUpdate<'_>, EspError> {
        // This might return a null pointer in case no valid partition can be found.
        // We don't have to handle this error in here, as this will implicitly trigger an error
        // as soon as the null pointer is provided to `esp_ota_begin`.
        let partition = unsafe { esp_ota_get_next_update_partition(ptr::null()) };

        let mut handle: esp_ota_handle_t = Default::default();

        esp!(unsafe { esp_ota_begin(partition, OTA_SIZE_UNKNOWN as usize, &mut handle) })?;

        Ok(EspOtaUpdate {
            update_partition: partition,
            update_handle: handle,
            _data: PhantomData,
        })
    }

    pub fn mark_running_slot_valid(&mut self) -> Result<(), EspError> {
        Ok(esp!(unsafe { esp_ota_mark_app_valid_cancel_rollback() })?)
    }

    pub fn mark_running_slot_invalid_and_reboot(&mut self) -> EspError {
        if let Err(err) = esp!(unsafe { esp_ota_mark_app_invalid_rollback_and_reboot() }) {
            err
        } else {
            unreachable!()
        }
    }

    fn get_factory_partition(&self) -> Result<*const esp_partition_t, EspError> {
        let partition_iterator = unsafe {
            esp_partition_find(
                esp_partition_type_t_ESP_PARTITION_TYPE_APP,
                esp_partition_subtype_t_ESP_PARTITION_SUBTYPE_APP_FACTORY,
                b"factory\0" as *const _ as *const _,
            )
        };

        if partition_iterator.is_null() {
            return Err(EspError::from_infallible::<ESP_ERR_NOT_SUPPORTED>());
        }

        let partition = unsafe { esp_partition_get(partition_iterator) };

        unsafe { esp_partition_iterator_release(partition_iterator) };

        Ok(partition)
    }

    fn get_slot(&self, partition: &esp_partition_t) -> Result<Slot, EspError> {
        Ok(Slot {
            label: unsafe { from_cstr_ptr(&partition.label as *const _ as *const _) }
                .try_into()
                .unwrap(),
            state: self.get_state(partition)?,
            firmware: self.get_firmware_info(partition)?,
        })
    }

    fn get_state(&self, partition: &esp_partition_t) -> Result<SlotState, EspError> {
        let mut state: esp_ota_img_states_t = Default::default();

        let err =
            unsafe { esp_ota_get_state_partition(partition as *const _, &mut state as *mut _) };

        Ok(if err == ESP_ERR_NOT_FOUND {
            SlotState::Unknown
        } else if err == ESP_ERR_NOT_SUPPORTED {
            SlotState::Factory
        } else {
            esp!(err)?;

            #[allow(non_upper_case_globals)]
            match state {
                esp_ota_img_states_t_ESP_OTA_IMG_NEW
                | esp_ota_img_states_t_ESP_OTA_IMG_PENDING_VERIFY => SlotState::Unverified,
                esp_ota_img_states_t_ESP_OTA_IMG_VALID => SlotState::Valid,
                esp_ota_img_states_t_ESP_OTA_IMG_INVALID
                | esp_ota_img_states_t_ESP_OTA_IMG_ABORTED => SlotState::Invalid,
                esp_ota_img_states_t_ESP_OTA_IMG_UNDEFINED => SlotState::Unknown,
                _ => SlotState::Unknown,
            }
        })
    }

    fn get_firmware_info(
        &self,
        partition: &esp_partition_t,
    ) -> Result<Option<FirmwareInfo>, EspError> {
        let mut app_desc: esp_app_desc_t = Default::default();

        let err =
            unsafe { esp_ota_get_partition_description(partition as *const _, &mut app_desc) };

        Ok(if err == ESP_ERR_NOT_FOUND {
            None
        } else {
            esp!(err)?;

            Some(Newtype(&app_desc).into())
        })
    }
}

impl Drop for EspOta {
    fn drop(&mut self) {
        *TAKEN.lock() = false;

        info!("Dropped");
    }
}

impl io::ErrorType for EspOta {
    type Error = EspIOError;
}

impl Ota for EspOta {
    type Update<'a> = EspOtaUpdate<'a> where Self: 'a;

    fn get_boot_slot(&self) -> Result<Slot, Self::Error> {
        EspOta::get_boot_slot(self).map_err(EspIOError)
    }

    fn get_running_slot(&self) -> Result<Slot, Self::Error> {
        EspOta::get_running_slot(self).map_err(EspIOError)
    }

    fn get_update_slot(&self) -> Result<Slot, Self::Error> {
        EspOta::get_update_slot(self).map_err(EspIOError)
    }

    fn is_factory_reset_supported(&self) -> Result<bool, Self::Error> {
        EspOta::is_factory_reset_supported(self).map_err(EspIOError)
    }

    fn factory_reset(&mut self) -> Result<(), Self::Error> {
        EspOta::factory_reset(self).map_err(EspIOError)
    }

    fn initiate_update(&mut self) -> Result<Self::Update<'_>, Self::Error> {
        EspOta::initiate_update(self).map_err(EspIOError)
    }

    fn mark_running_slot_valid(&mut self) -> Result<(), Self::Error> {
        EspOta::mark_running_slot_valid(self).map_err(EspIOError)
    }

    fn mark_running_slot_invalid_and_reboot(&mut self) -> Self::Error {
        EspIOError(EspOta::mark_running_slot_invalid_and_reboot(self))
    }
}

unsafe impl<'a> Send for EspOtaUpdate<'a> {}

impl<'a> io::ErrorType for EspOtaUpdate<'a> {
    type Error = EspIOError;
}

impl<'a> OtaUpdate for EspOtaUpdate<'a> {
    type OtaUpdateFinished = EspOtaUpdateFinished<'a>;

    fn finish(self) -> Result<Self::OtaUpdateFinished, Self::Error> {
        let finish = EspOtaUpdate::finish(self)?;

        Ok(finish)
    }

    fn complete(self) -> Result<(), Self::Error> {
        EspOtaUpdate::complete(self)?;

        Ok(())
    }

    fn abort(self) -> Result<(), Self::Error> {
        EspOtaUpdate::abort(self)?;

        Ok(())
    }
}

impl<'a> io::Write for EspOtaUpdate<'a> {
    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        EspOtaUpdate::write(self, buf)?;

        Ok(buf.len())
    }

    fn flush(&mut self) -> Result<(), Self::Error> {
        EspOtaUpdate::flush(self)?;

        Ok(())
    }
}

unsafe impl<'a> Send for EspOtaUpdateFinished<'a> {}

impl<'a> io::ErrorType for EspOtaUpdateFinished<'a> {
    type Error = EspIOError;
}

impl<'a> OtaUpdateFinished for EspOtaUpdateFinished<'a> {
    fn activate(self) -> Result<(), Self::Error> {
        EspOtaUpdateFinished::activate(self)?;

        Ok(())
    }
}