1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
use enumset::{EnumSet, EnumSetType};
use esp_idf_sys::*;
/// For backwards compatibility
pub type IntrFlags = InterruptType;
/// Interrupt allocation flags.
/// These flags can be used to specify which interrupt qualities the code calling esp_intr_alloc* needs.
#[derive(Debug, EnumSetType)]
pub enum InterruptType {
// Accept a Level 1 interrupt vector (lowest priority)
Level1,
// Accept a Level 2 interrupt vector.
Level2,
// Accept a Level 3 interrupt vector.
Level3,
// Accept a Level 4 interrupt vector.
Level4,
// Accept a Level 5 interrupt vector.
Level5,
// Accept a Level 6 interrupt vector.
Level6,
// Accept a Level 7 interrupt vector (highest priority)
Nmi,
// Interrupt can be shared between ISRs.
Shared,
// Edge-triggered interrupt.
Edge,
// ISR can be called if cache is disabled.
// Must be used with a proper option *_ISR_IN_IRAM in SDKCONFIG
Iram,
// Return with this interrupt disabled.
IntrDisabled,
// Low and medium prio interrupts. These can be handled in C.
LowMed,
// High level interrupts. Need to be handled in assembly.
High,
}
impl InterruptType {
pub fn levels(&self) -> EnumSet<Self> {
Self::Level1
| Self::Level2
| Self::Level3
| Self::Level4
| Self::Level5
| Self::Level6
| Self::Nmi
}
pub(crate) fn to_native(flags: EnumSet<Self>) -> u32 {
let mut result = 0;
for flag in flags {
result |= u32::from(flag);
}
result
}
}
impl From<InterruptType> for u32 {
fn from(flag: InterruptType) -> Self {
match flag {
InterruptType::Level1 => esp_idf_sys::ESP_INTR_FLAG_LEVEL1,
InterruptType::Level2 => esp_idf_sys::ESP_INTR_FLAG_LEVEL2,
InterruptType::Level3 => esp_idf_sys::ESP_INTR_FLAG_LEVEL3,
InterruptType::Level4 => esp_idf_sys::ESP_INTR_FLAG_LEVEL4,
InterruptType::Level5 => esp_idf_sys::ESP_INTR_FLAG_LEVEL5,
InterruptType::Level6 => esp_idf_sys::ESP_INTR_FLAG_LEVEL6,
InterruptType::Nmi => esp_idf_sys::ESP_INTR_FLAG_NMI,
InterruptType::Shared => esp_idf_sys::ESP_INTR_FLAG_SHARED,
InterruptType::Edge => esp_idf_sys::ESP_INTR_FLAG_EDGE,
InterruptType::Iram => esp_idf_sys::ESP_INTR_FLAG_IRAM,
InterruptType::IntrDisabled => esp_idf_sys::ESP_INTR_FLAG_INTRDISABLED,
InterruptType::LowMed => esp_idf_sys::ESP_INTR_FLAG_LOWMED,
InterruptType::High => esp_idf_sys::ESP_INTR_FLAG_HIGH,
}
}
}
pub(crate) static CS: IsrCriticalSection = IsrCriticalSection::new();
/// Returns true if the currently active core is executing an ISR request
#[inline(always)]
#[link_section = ".iram1.interrupt_active"]
pub fn active() -> bool {
unsafe { xPortInIsrContext() != 0 }
}
pub fn with_isr_yield_signal(cb: impl FnOnce()) -> bool {
if !active() {
panic!("with_isr_yield_signal() can only be called from an ISR context");
}
let mut signaled = false;
let prev_yielder =
unsafe { set_isr_yielder(Some((do_yield_signal, &mut signaled as *mut _ as _))) };
cb();
unsafe { set_isr_yielder(prev_yielder) };
signaled
}
unsafe fn do_yield_signal(arg: *mut ()) {
let signaled = arg.cast::<bool>().as_mut().unwrap();
*signaled = true
}
#[allow(clippy::type_complexity)]
static mut ISR_YIELDER: Option<(unsafe fn(*mut ()), *mut ())> = None;
#[allow(clippy::type_complexity)]
#[inline(always)]
#[link_section = ".iram1.interrupt_get_isr_yielder"]
pub(crate) unsafe fn get_isr_yielder() -> Option<(unsafe fn(*mut ()), *mut ())> {
if active() {
free(|| {
if let Some((func, arg)) = unsafe { ISR_YIELDER } {
Some((func, arg))
} else {
None
}
})
} else {
None
}
}
/// # Safety
///
/// This function should only be called from within an ISR handler, so as to set
/// a custom ISR yield function (e.g. when using the ESP-IDF timer service).
///
/// Thus, if some function further down the ISR call chain invokes `do_yield`,
/// the custom yield function set here will be called.
///
/// Users should not forget to call again `set_isr_yielder` at the end of the
/// ISR handler so as to reastore the yield function which was valid before the
/// ISR handler was invoked.
#[allow(clippy::type_complexity)]
#[inline(always)]
#[link_section = ".iram1.interrupt_set_isr_yielder"]
pub unsafe fn set_isr_yielder(
yielder: Option<(unsafe fn(*mut ()), *mut ())>,
) -> Option<(unsafe fn(*mut ()), *mut ())> {
if active() {
free(|| {
let previous = unsafe { ISR_YIELDER };
unsafe { ISR_YIELDER = yielder };
previous
})
} else {
None
}
}
/// A critical section allows the user to disable interrupts
#[cfg(any(esp32, esp32s2, esp32s3, esp32p4))]
pub struct IsrCriticalSection(core::cell::UnsafeCell<portMUX_TYPE>);
#[cfg(not(any(esp32, esp32s2, esp32s3, esp32p4)))]
pub struct IsrCriticalSection(core::marker::PhantomData<*const ()>);
#[cfg(not(any(esp32, esp32s2, esp32s3, esp32p4)))]
#[inline(always)]
#[link_section = ".iram1.interrupt_enter"]
fn enter(_cs: &IsrCriticalSection) {
unsafe {
vPortEnterCritical();
}
}
#[cfg(any(esp32, esp32s2, esp32s3, esp32p4))]
#[inline(always)]
#[link_section = ".iram1.interrupt_enter"]
fn enter(cs: &IsrCriticalSection) {
unsafe {
xPortEnterCriticalTimeout(cs.0.get(), portMUX_NO_TIMEOUT);
}
}
#[cfg(not(any(esp32, esp32s2, esp32s3, esp32p4)))]
#[inline(always)]
#[link_section = ".iram1.interrupt_exit"]
fn exit(_cs: &IsrCriticalSection) {
unsafe {
vPortExitCritical();
}
}
#[cfg(any(esp32, esp32s2, esp32s3, esp32p4))]
#[inline(always)]
#[link_section = ".iram1.interrupt_exit"]
fn exit(cs: &IsrCriticalSection) {
unsafe {
vPortExitCritical(cs.0.get());
}
}
impl IsrCriticalSection {
/// Constructs a new `IsrCriticalSection` instance
#[inline(always)]
#[link_section = ".iram1.interrupt_cs_new"]
pub const fn new() -> Self {
#[cfg(any(esp32, esp32s2, esp32s3, esp32p4))]
let mux = core::cell::UnsafeCell::new(portMUX_TYPE {
owner: portMUX_FREE_VAL,
count: 0,
#[cfg(esp_idf_freertos_portmux_debug)]
lastLockedFn: b"(never locked)",
#[cfg(esp_idf_freertos_portmux_debug)]
lastLockedLine: -1,
});
#[cfg(not(any(esp32, esp32s2, esp32s3, esp32p4)))]
let mux = core::marker::PhantomData;
Self(mux)
}
/// Disables all interrupts for the lifetime of the returned guard instance.
/// This method supports nesting in that is safe to be called multiple times.
/// This method is also safe to call from ISR routines.
///
/// NOTE: On dual-core esp32* chips, interrupts will be disabled only on one of
/// the cores (the one where `IsrCriticalSection::enter` is called), while the other
/// core will continue its execution. Moreover, if the same `IsrCriticalSection` instance
/// is shared across multiple threads, where some of these happen to be scheduled on
/// the second core (which has its interrupts enabled), the second core will then spinlock
/// (busy-wait) in `IsrCriticalSection::enter`, until the first CPU releases the critical
/// section and re-enables its interrupts. The second core will then - in turn - disable
/// its interrupts and own the spinlock.
///
/// For more information, refer to https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/freertos-smp.html#critical-sections
#[inline(always)]
#[link_section = ".iram1.interrupt_cs_enter"]
pub fn enter(&self) -> IsrCriticalSectionGuard {
enter(self);
IsrCriticalSectionGuard(self)
}
}
impl Default for IsrCriticalSection {
#[inline(always)]
#[link_section = ".iram1.interrupt_cs_default"]
fn default() -> Self {
Self::new()
}
}
unsafe impl Send for IsrCriticalSection {}
unsafe impl Sync for IsrCriticalSection {}
pub struct IsrCriticalSectionGuard<'a>(&'a IsrCriticalSection);
impl<'a> Drop for IsrCriticalSectionGuard<'a> {
/// Drops the critical section guard thus potentially re-enabling
/// al interrupts for the currently active core.
///
/// Note that - due to the fact that calling `IsrCriticalSection::enter`
/// multiple times on the same or multiple critical sections is supported -
/// interrupts for the core will be re-enabled only when the last guard that
/// disabled interrupts for the concrete core is dropped.
#[inline(always)]
#[link_section = ".iram1.interrupt_csg_drop"]
fn drop(&mut self) {
exit(self.0);
}
}
/// Executes closure f in an interrupt-free context
#[inline(always)]
#[link_section = ".iram1.interrupt_free"]
pub fn free<R>(f: impl FnOnce() -> R) -> R {
let _guard = CS.enter();
f()
}
#[cfg(feature = "wake-from-isr")]
pub mod asynch {
pub type HalIsrNotification = crate::task::asynch::Notification;
}
#[cfg(not(feature = "wake-from-isr"))]
pub mod asynch {
use core::{
cell::UnsafeCell,
ffi::{c_void, CStr},
future::Future,
num::NonZeroU32,
sync::atomic::{AtomicPtr, Ordering},
task::{Context, Poll, Waker},
};
use esp_idf_sys::EspError;
use log::info;
use crate::{
cpu::Core,
delay,
task::{asynch::Notification, CriticalSection},
};
use super::IsrCriticalSection;
/// The HAL-global wake runner.
/// You should use no more than 64 tasks with it.
///
/// `*IsrNotification` instances use this wake runner when they are triggered from an ISR context.
pub static HAL_ISR_REACTOR: IsrReactor<64> = IsrReactor::new(IsrReactorConfig::new());
/// Wake runner configuration
#[derive(Clone, Debug)]
pub struct IsrReactorConfig {
pub task_name: &'static CStr,
pub task_stack_size: usize,
pub task_priority: u8,
pub task_pin_to_core: Option<Core>,
}
impl IsrReactorConfig {
pub const fn new() -> Self {
Self {
task_name: unsafe { CStr::from_bytes_with_nul_unchecked(b"IsrReactor\0") },
task_stack_size: 3084,
task_priority: 11,
task_pin_to_core: None,
}
}
}
impl Default for IsrReactorConfig {
fn default() -> Self {
Self::new()
}
}
/// IsrReactor is a utility allowing `Waker` instances to be awoken fron an ISR context.
///
/// General problem:
/// In an interrupt, using Waker instances coming from generic executors is impossible,
/// because these are not designed with an ISR-safety in mind.
///
/// Waking a waker means that its task would be scheduled on the executor queue, which might involve
/// allocation, and/or synchronization primitives which are not safe to use from an ISR context.
///
/// Similarly, dropping a waker might also drop the executor task, resulting in a deallocation, which is also
/// not safe in an ISR context.
///
/// These problems are alleviated by replacing direct `waker.wake()` calls to `WakerRunner::schedule(waker)`.
/// What `IsrReactor::schedule` does is to push the waker into a bounded queue and then notify a hidden FreeRTOS task.
/// Once the FreeRTOS task gets awoken, it wakes all wakers scheduled on the bounded queue and empties the queue.
pub struct IsrReactor<const N: usize> {
wakers_cs: IsrCriticalSection,
wakers: UnsafeCell<heapless::Deque<Waker, N>>,
task_cs: CriticalSection,
task: AtomicPtr<crate::sys::tskTaskControlBlock>,
task_config: IsrReactorConfig,
}
impl<const N: usize> IsrReactor<N> {
/// Create a new `IsrReactor` instance.
pub const fn new(config: IsrReactorConfig) -> Self {
Self {
wakers_cs: IsrCriticalSection::new(),
wakers: UnsafeCell::new(heapless::Deque::new()),
task_cs: CriticalSection::new(),
task: AtomicPtr::new(core::ptr::null_mut()),
task_config: config,
}
}
/// Returns `true` if the wake runner is started.
pub fn is_started(&self) -> bool {
!self.task.load(Ordering::SeqCst).is_null()
}
/// Starts the wake runner. Returns `false` if it had been already started.
pub fn start(&'static self) -> Result<bool, EspError> {
let _guard = self.task_cs.enter();
if self.task.load(Ordering::SeqCst).is_null() {
let task = unsafe {
crate::task::create(
Self::task_run,
self.task_config.task_name,
self.task_config.task_stack_size,
self as *const _ as *const c_void as *mut _,
self.task_config.task_priority,
self.task_config.task_pin_to_core,
)?
};
self.task.store(task as _, Ordering::SeqCst);
info!("IsrReactor {:?} started.", self.task_config.task_name);
Ok(true)
} else {
Ok(false)
}
}
/// Stops the wake runner. Returns `false` if it had been already stopped.
pub fn stop(&self) -> bool {
let _guard = self.task_cs.enter();
let task = self.task.swap(core::ptr::null_mut(), Ordering::SeqCst);
if !task.is_null() {
unsafe {
crate::task::destroy(task as _);
}
info!("IsrReactor {:?} stopped.", self.task_config.task_name);
true
} else {
false
}
}
/// Schedules a waker to be awoken by the hidden FreeRTOS task running in the background.
/// If not called from within an ISR context, calls `waker.wake()` directly instead of scheduling the waker.
/// NOTE: If the wake runner is not started yet, scheduling fron an ISR content would fail silently.
///
/// This and only this method is safe to call from an ISR context.
pub fn schedule(&self, waker: Waker) {
if super::active() {
self.wakers(|wakers| {
let earlier_waker = wakers.iter_mut().find(|a_waker| a_waker.will_wake(&waker));
if let Some(earlier_waker) = earlier_waker {
*earlier_waker = waker;
} else if wakers.push_back(waker).is_err() {
panic!("IsrReactor queue overflow");
}
let task = self.task.load(Ordering::SeqCst);
if !task.is_null() {
unsafe {
crate::task::notify_and_yield(task as _, NonZeroU32::new(1).unwrap());
}
}
})
} else {
waker.wake();
}
}
fn run(&self) {
loop {
loop {
let waker = self.wakers(|wakers| wakers.pop_front());
if let Some(waker) = waker {
waker.wake();
} else {
break;
}
}
crate::task::wait_notification(delay::BLOCK);
}
}
fn wakers<F: FnOnce(&mut heapless::Deque<Waker, N>) -> R, R>(&self, f: F) -> R {
// if super::active() {
// let wakers = unsafe { self.wakers.get().as_mut().unwrap() };
// f(wakers)
// } else {
let _guard = self.wakers_cs.enter();
let wakers = unsafe { self.wakers.get().as_mut().unwrap() };
f(wakers)
// }
}
extern "C" fn task_run(ctx: *mut c_void) {
let this =
unsafe { (ctx as *mut IsrReactor<N> as *const IsrReactor<N>).as_ref() }.unwrap();
this.run();
}
}
impl<const N: usize> Drop for IsrReactor<N> {
fn drop(&mut self) {
self.stop();
}
}
unsafe impl<const N: usize> Send for IsrReactor<N> {}
unsafe impl<const N: usize> Sync for IsrReactor<N> {}
/// Single-slot lock-free signaling primitive supporting signalling with a `u32` bit-set.
/// A variation of the `Notification` HAL primitive which is however safe to be notified from an ISR context.
///
/// It is useful for sending data between an ISR routine (or a regular task context) and an async task when the
/// receiver only cares about the latest data, and therefore it's fine to "lose" messages.
/// This is often the case for "state" updates.
///
/// The sending part of the primitive is non-blocking and ISR-safe, so it can be called from anywhere.
///
/// Similar in spirit to the ESP-IDF FreeRTOS task notifications in that it is light-weight and operates on bit-sets,
/// but for synchronization between an asynchronous task, and another one, which might be blocking or asynchronous.
pub struct IsrNotification<const N: usize> {
inner: Notification,
reactor: &'static IsrReactor<N>,
}
impl<const N: usize> IsrNotification<N> {
/// Creates a new `IsrNotification`.
/// This method is safe to call from an ISR context, yet such use cases should not normally occur in practice.
pub const fn new(reactor: &'static IsrReactor<N>) -> Self {
Self {
inner: Notification::new(),
reactor,
}
}
/// Marks the least significant bit (bit 0) in this `IsrNotification` as nofified.
/// This method is safe to call from an ISR context.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify_lsb(&self) -> bool {
self.notify(NonZeroU32::new(1).unwrap())
}
/// Marks the supplied bits in this `IsrNotification` as notified.
/// This method is safe to call from an ISR context.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify(&self, bits: NonZeroU32) -> bool {
if let Some(waker) = self.inner.notify_waker(bits) {
self.reactor.schedule(waker);
true
} else {
false
}
}
/// Clears the state of this notification by removing any registered waker and setting all bits to 0.
/// This method is NOT safe to call from an ISR context.
pub fn reset(&self) {
self.inner.reset();
}
/// Future that completes when this `IsrNotification` has been notified.
/// This method is NOT safe to call from an ISR context.
#[allow(unused)]
pub fn wait(&self) -> impl Future<Output = NonZeroU32> + '_ {
self.reactor.start().unwrap();
self.inner.wait()
}
/// Non-blocking method to check whether this notification has been notified.
/// This method is NOT safe to call from an ISR context.
pub fn poll_wait(&self, cx: &Context<'_>) -> Poll<NonZeroU32> {
self.reactor.start().unwrap();
self.inner.poll_wait(cx)
}
}
/// Single-slot lock-free signaling primitive supporting signalling with a `u32` bit-set.
/// A variation of the `IsrNotification` HAL primitive which is however safe to be notified from an ISR context.
/// The difference between this primitive and `IsrNotification` is that this one is hard-wired to the
/// global HAL wake runner (`HAL_WAKE_RUNNER`) and is thus occupying less space.
///
/// It is useful for sending data between an ISR routine (or a regular task context) and an async task when the
/// receiver only cares about the latest data, and therefore it's fine to "lose" messages.
/// This is often the case for "state" updates.
///
/// The sending part of the primitive is non-blocking and ISR-safe, so it can be called from anywhere.
///
/// Similar in spirit to the ESP-IDF FreeRTOS task notifications in that it is light-weight and operates on bit-sets,
/// but for synchronization between an asynchronous task, and another one, which might be blocking or asynchronous.
pub struct HalIsrNotification {
inner: Notification,
}
impl Default for HalIsrNotification {
fn default() -> Self {
Self::new()
}
}
impl HalIsrNotification {
/// Creates a new `HalIsrNotification`.
/// This method is safe to call from an ISR context, yet such use cases should not normally occur in practice.
pub const fn new() -> Self {
Self {
inner: Notification::new(),
}
}
/// Marks the least significant bit (bit 0) in this `IsrNotification` as nofified.
/// This method is safe to call from an ISR context.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify_lsb(&self) -> bool {
self.notify(NonZeroU32::new(1).unwrap())
}
/// Marks the supplied bits in this `HalIsrNotification` as notified.
/// This method is safe to call from an ISR context.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify(&self, bits: NonZeroU32) -> bool {
if let Some(waker) = self.inner.notify_waker(bits) {
HAL_ISR_REACTOR.schedule(waker);
true
} else {
false
}
}
/// Clears the state of this notification by removing any registered waker and setting all bits to 0.
/// This method is NOT safe to call from an ISR context.
pub fn reset(&self) {
self.inner.reset();
}
/// Future that completes when this `HalIsrNotification` has been notified.
/// This method is NOT safe to call from an ISR context.
#[allow(unused)]
pub fn wait(&self) -> impl Future<Output = NonZeroU32> + '_ {
HAL_ISR_REACTOR.start().unwrap();
self.inner.wait()
}
/// Non-blocking method to check whether this notification has been notified.
/// This method is NOT safe to call from an ISR context.
pub fn poll_wait(&self, cx: &Context<'_>) -> Poll<NonZeroU32> {
HAL_ISR_REACTOR.start().unwrap();
self.inner.poll_wait(cx)
}
}
}
#[cfg(feature = "embassy-sync")]
pub mod embassy_sync {
use embassy_sync::blocking_mutex::raw::RawMutex;
/// A mutex that allows borrowing data across executors and interrupts.
///
/// # Safety
///
/// This mutex is safe to share between different executors and interrupts.
pub struct IsrRawMutex(());
unsafe impl Send for IsrRawMutex {}
unsafe impl Sync for IsrRawMutex {}
impl IsrRawMutex {
/// Create a new `IsrRawMutex`.
pub const fn new() -> Self {
Self(())
}
}
unsafe impl RawMutex for IsrRawMutex {
const INIT: Self = Self::new();
fn lock<R>(&self, f: impl FnOnce() -> R) -> R {
super::free(f)
}
}
}