1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
//! Delay providers.
//!
//! If you don't know how large your delays will be, you'll probably want to
//! use [`Delay`]. Otherwise use [`Ets`] for delays <10ms and
//! [`FreeRtos`] for delays >=10ms.
//!
//! Example of an Ets vs. FreeRtos auto-selecting delay:
//! ```
//! use esp_idf_hal::delay::Delay;
//!
//! let delay: Delay = Default::default();
//! // ...
//! delay.delay_us(42);
//! // ...
//! delay.delay_ms(142);
//! // ...
//! ```
//!
//! Example of a small microsecond delay:
//! ```
//! use esp_idf_hal::delay::Ets;
//!
//! Ets::delay_us(42);
//! ```
//!
//! Example of a millisecond delay:
//! ```
//! use esp_idf_hal::delay::FreeRtos;
//!
//! FreeRtos::delay_ms(42);
//! ```
//!
//! Example of an [embedded_hal::delay::DelayNs] consumer with an
//! Ets vs. FreeRtos auto-selecting delay:
//! ```ignore
//! use esp_idf_hal::delay::Delay;
//!
//! let mut delay: Delay = Default::default();
//! some_trait_user(&mut delay);
//! ```
use core::time::Duration;
use esp_idf_sys::*;
/// The raw OS tick type. Also see [TickType].
pub use esp_idf_sys::TickType_t;
/// Sentinel value used as "maximum delay" or "maximum blocking" marker.
///
/// This value is also used for representing `Option<Duration>` being `None`
/// when converting to/from [TickType].
pub const BLOCK: TickType_t = TickType_t::MAX;
/// Sentinel value used as "no delay" or "no blocking" marker.
pub const NON_BLOCK: TickType_t = 0;
/// The configured OS tick rate in Hz.
/// There are [TICK_RATE_HZ] number of [TickType] ticks per second.
pub const TICK_RATE_HZ: u32 = configTICK_RATE_HZ;
const MS_PER_S: u64 = 1_000;
const NS_PER_MS: u64 = 1_000_000;
const US_PER_MS: u32 = 1_000;
const NS_PER_US: u32 = 1_000;
#[inline]
const fn const_min_u64(a: u64, b: u64) -> u64 {
if a < b {
a
} else {
b
}
}
/// Transparent wrapper around [TickType_t] with conversion methods.
#[repr(transparent)]
pub struct TickType(pub TickType_t);
impl TickType {
/// Construct a [TickType] from a number of ticks.
#[inline]
pub const fn new(ticks: TickType_t) -> Self {
Self(ticks)
}
/// Construct a [TickType] from a number of milliseconds.
/// This function will round the number of ticks up, if required.
pub const fn new_millis(ms: u64) -> Self {
let ticks = ms
.saturating_mul(TICK_RATE_HZ as u64)
.saturating_add(MS_PER_S - 1)
/ MS_PER_S;
Self(const_min_u64(ticks, TickType_t::MAX as _) as _)
}
/// Get the number of ticks.
#[inline]
pub const fn ticks(&self) -> TickType_t {
self.0
}
/// Convert the number of ticks to a number of milliseconds.
/// This function will round the number of milliseconds up, if required.
pub const fn as_millis(&self) -> u64 {
(self.0 as u64)
.saturating_mul(MS_PER_S)
.saturating_add(TICK_RATE_HZ as u64 - 1)
/ TICK_RATE_HZ as u64
}
/// Convert the number of ticks to a number of milliseconds
/// and saturate to u32.
/// This function will round the number of milliseconds up, if required.
#[inline]
pub const fn as_millis_u32(&self) -> u32 {
const_min_u64(self.as_millis(), u32::MAX as _) as _
}
}
impl From<TickType_t> for TickType {
#[inline]
fn from(value: TickType_t) -> Self {
Self::new(value)
}
}
impl From<TickType> for TickType_t {
#[inline]
fn from(value: TickType) -> Self {
value.ticks()
}
}
impl From<Duration> for TickType {
fn from(duration: Duration) -> Self {
let sec_ms = duration.as_secs().saturating_mul(MS_PER_S);
let subsec_ns: u64 = duration.subsec_nanos().into();
// Convert to ms and round up. Not saturating. Cannot overflow.
let subsec_ms = (subsec_ns + (NS_PER_MS - 1)) / NS_PER_MS;
TickType::new_millis(sec_ms.saturating_add(subsec_ms))
}
}
impl From<Option<Duration>> for TickType {
fn from(duration: Option<Duration>) -> Self {
if let Some(duration) = duration {
duration.into()
} else {
TickType(BLOCK)
}
}
}
impl From<TickType> for Duration {
fn from(ticks: TickType) -> Self {
Duration::from_millis(ticks.as_millis())
}
}
impl From<TickType> for Option<Duration> {
fn from(ticks: TickType) -> Self {
if ticks.0 == BLOCK {
None
} else {
Some(ticks.into())
}
}
}
/// Espressif's built-in delay provider for small delays
///
/// Use only for very small delays or else the FreeRTOS IDLE tasks might starve and
/// the IDLE task's watchdog will trigger.
///
/// Small delays are up to `1000 /` [TICK_RATE_HZ] milliseconds, which is typically
/// 10 milliseconds.
pub struct Ets;
// This binding is no longer available in the generated bindings for ESP-IDF 5 or later.
// The function itself is still available. Therefore, we define the binding here.
#[cfg(not(esp_idf_version_major = "4"))]
extern "C" {
fn ets_delay_us(us: u32);
}
impl Ets {
/// Pauses execution for at minimum `us` microseconds.
/// The delay can be longer due to rounding and/or runtime effects.
#[inline]
pub fn delay_us(us: u32) {
unsafe {
ets_delay_us(us);
}
}
/// Pauses execution for at minimum `ms` milliseconds.
/// The delay can be longer due to rounding and/or runtime effects.
/// This delay should only be used up to `1000 /` [TICK_RATE_HZ] milliseconds.
pub fn delay_ms(ms: u32) {
Self::delay_us(ms.saturating_mul(US_PER_MS));
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u32> for Ets {
#[inline]
fn delay_us(&mut self, us: u32) {
Ets::delay_us(us);
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u16> for Ets {
#[inline]
fn delay_us(&mut self, us: u16) {
Ets::delay_us(us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u8> for Ets {
#[inline]
fn delay_us(&mut self, us: u8) {
Ets::delay_us(us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u32> for Ets {
#[inline]
fn delay_ms(&mut self, ms: u32) {
Ets::delay_ms(ms);
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u16> for Ets {
#[inline]
fn delay_ms(&mut self, ms: u16) {
Ets::delay_ms(ms.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u8> for Ets {
#[inline]
fn delay_ms(&mut self, ms: u8) {
Ets::delay_ms(ms.into());
}
}
impl embedded_hal::delay::DelayNs for Ets {
#[inline]
fn delay_ns(&mut self, ns: u32) {
Ets::delay_us(ns.saturating_add(NS_PER_US - 1) / NS_PER_US);
}
#[inline]
fn delay_us(&mut self, us: u32) {
Ets::delay_us(us);
}
#[inline]
fn delay_ms(&mut self, ms: u32) {
Ets::delay_ms(ms);
}
}
/// FreeRTOS-based delay provider for delays larger than 10 ms.
///
/// Delays bigger than `1000 /` [TICK_RATE_HZ] milliseconds (typically 10 ms) used in a
/// loop would starve the FreeRTOS IDLE tasks as they are low prio tasks and hence the
/// IDLE task's watchdog could trigger.
/// This delayer avoids that by yielding to the OS during the delay.
pub struct FreeRtos;
impl FreeRtos {
/// Pauses execution for at minimum `ms` milliseconds.
/// The delay can be longer due to rounding and/or runtime effects.
pub fn delay_ms(ms: u32) {
let ticks = TickType::new_millis(ms.into()).ticks();
unsafe {
vTaskDelay(ticks);
}
}
// Internal helper: Round up to ms.
// This is not supposed to be `pub`, because the user code shall not use this
// timer for microsecond delay. Only used for trait impl below.
fn delay_us(us: u32) {
Self::delay_ms(us.saturating_add(US_PER_MS - 1) / US_PER_MS);
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u32> for FreeRtos {
#[inline]
fn delay_us(&mut self, us: u32) {
FreeRtos::delay_us(us);
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u16> for FreeRtos {
#[inline]
fn delay_us(&mut self, us: u16) {
FreeRtos::delay_us(us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u8> for FreeRtos {
#[inline]
fn delay_us(&mut self, us: u8) {
FreeRtos::delay_us(us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u32> for FreeRtos {
#[inline]
fn delay_ms(&mut self, ms: u32) {
FreeRtos::delay_ms(ms);
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u16> for FreeRtos {
#[inline]
fn delay_ms(&mut self, ms: u16) {
FreeRtos::delay_ms(ms.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u8> for FreeRtos {
#[inline]
fn delay_ms(&mut self, ms: u8) {
FreeRtos::delay_ms(ms.into());
}
}
impl embedded_hal::delay::DelayNs for FreeRtos {
#[inline]
fn delay_ns(&mut self, ns: u32) {
FreeRtos::delay_us(ns.saturating_add(NS_PER_US - 1) / NS_PER_US);
}
#[inline]
fn delay_us(&mut self, us: u32) {
FreeRtos::delay_us(us);
}
#[inline]
fn delay_ms(&mut self, ms: u32) {
FreeRtos::delay_ms(ms);
}
}
/// A delay provider that uses [`Ets`] for delays below a certain threshold
/// and [`FreeRtos`] for delays equal or above the threshold.
#[derive(Copy, Clone)]
pub struct Delay(u32);
impl Delay {
/// Create a [Delay] with a default threshold of 1 ms.
#[inline]
pub const fn new_default() -> Self {
Self::new(1000)
}
/// Create a [Delay] with a threshold of the specified amount of microseconds.
#[inline]
pub const fn new(threshold_us: u32) -> Self {
Self(threshold_us)
}
/// Pauses execution for at minimum `us` microseconds.
/// The delay can be longer due to rounding and/or runtime effects.
#[inline]
pub fn delay_us(&self, us: u32) {
if us < self.0 {
Ets::delay_us(us);
} else {
FreeRtos::delay_us(us);
}
}
/// Pauses execution for at minimum `ms` milliseconds.
/// The delay can be longer due to rounding and/or runtime effects.
pub fn delay_ms(&self, ms: u32) {
if ms.saturating_mul(US_PER_MS) < self.0 {
Ets::delay_ms(ms);
} else {
FreeRtos::delay_ms(ms);
}
}
}
impl Default for Delay {
#[inline]
fn default() -> Self {
Self::new_default()
}
}
impl embedded_hal::delay::DelayNs for Delay {
#[inline]
fn delay_ns(&mut self, ns: u32) {
Delay::delay_us(self, ns.saturating_add(NS_PER_US - 1) / NS_PER_US)
}
#[inline]
fn delay_us(&mut self, us: u32) {
Delay::delay_us(self, us)
}
#[inline]
fn delay_ms(&mut self, ms: u32) {
Delay::delay_ms(self, ms)
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u8> for Delay {
#[inline]
fn delay_us(&mut self, us: u8) {
Delay::delay_us(self, us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u16> for Delay {
#[inline]
fn delay_us(&mut self, us: u16) {
Delay::delay_us(self, us.into());
}
}
impl embedded_hal_0_2::blocking::delay::DelayUs<u32> for Delay {
#[inline]
fn delay_us(&mut self, us: u32) {
Delay::delay_us(self, us);
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u8> for Delay {
#[inline]
fn delay_ms(&mut self, ms: u8) {
Delay::delay_ms(self, ms.into())
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u16> for Delay {
#[inline]
fn delay_ms(&mut self, ms: u16) {
Delay::delay_ms(self, ms.into())
}
}
impl embedded_hal_0_2::blocking::delay::DelayMs<u32> for Delay {
#[inline]
fn delay_ms(&mut self, ms: u32) {
Delay::delay_ms(self, ms)
}
}