1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
//! Futures
//!
//! This module contains a number of functions for working with `Future`s,
//! including the `FutureExt` trait which adds methods to `Future` types.

#[cfg(feature = "alloc")]
use alloc::boxed::Box;
use core::pin::Pin;

use crate::fns::{inspect_fn, into_fn, ok_fn, InspectFn, IntoFn, OkFn};
use crate::future::{assert_future, Either};
use crate::never::Never;
use crate::stream::assert_stream;
#[cfg(feature = "alloc")]
use futures_core::future::{BoxFuture, LocalBoxFuture};
use futures_core::{
    future::Future,
    stream::Stream,
    task::{Context, Poll},
};
use pin_utils::pin_mut;

// Combinators

mod flatten;
mod fuse;
mod map;

delegate_all!(
    /// Future for the [`flatten`](super::FutureExt::flatten) method.
    Flatten<F>(
        flatten::Flatten<F, <F as Future>::Output>
    ): Debug + Future + FusedFuture + New[|x: F| flatten::Flatten::new(x)]
    where F: Future
);

delegate_all!(
    /// Stream for the [`flatten_stream`](FutureExt::flatten_stream) method.
    FlattenStream<F>(
        flatten::Flatten<F, <F as Future>::Output>
    ): Debug + Sink + Stream + FusedStream + New[|x: F| flatten::Flatten::new(x)]
    where F: Future
);

#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use fuse::Fuse;

delegate_all!(
    /// Future for the [`map`](super::FutureExt::map) method.
    Map<Fut, F>(
        map::Map<Fut, F>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| map::Map::new(x, f)]
);

delegate_all!(
    /// Stream for the [`into_stream`](FutureExt::into_stream) method.
    IntoStream<F>(
        crate::stream::Once<F>
    ): Debug + Stream + FusedStream + New[|x: F| crate::stream::Once::new(x)]
);

delegate_all!(
    /// Future for the [`map_into`](FutureExt::map_into) combinator.
    MapInto<Fut, T>(
        Map<Fut, IntoFn<T>>
    ): Debug + Future + FusedFuture + New[|x: Fut| Map::new(x, into_fn())]
);

delegate_all!(
    /// Future for the [`then`](FutureExt::then) method.
    Then<Fut1, Fut2, F>(
        flatten::Flatten<Map<Fut1, F>, Fut2>
    ): Debug + Future + FusedFuture + New[|x: Fut1, y: F| flatten::Flatten::new(Map::new(x, y))]
);

delegate_all!(
    /// Future for the [`inspect`](FutureExt::inspect) method.
    Inspect<Fut, F>(
        map::Map<Fut, InspectFn<F>>
    ): Debug + Future + FusedFuture + New[|x: Fut, f: F| map::Map::new(x, inspect_fn(f))]
);

delegate_all!(
    /// Future for the [`never_error`](super::FutureExt::never_error) combinator.
    NeverError<Fut>(
        Map<Fut, OkFn<Never>>
    ): Debug + Future + FusedFuture + New[|x: Fut| Map::new(x, ok_fn())]
);

delegate_all!(
    /// Future for the [`unit_error`](super::FutureExt::unit_error) combinator.
    UnitError<Fut>(
        Map<Fut, OkFn<()>>
    ): Debug + Future + FusedFuture + New[|x: Fut| Map::new(x, ok_fn())]
);

#[cfg(feature = "std")]
mod catch_unwind;
#[cfg(feature = "std")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::catch_unwind::CatchUnwind;

#[cfg(feature = "channel")]
#[cfg_attr(docsrs, doc(cfg(feature = "channel")))]
#[cfg(feature = "std")]
mod remote_handle;
#[cfg(feature = "channel")]
#[cfg_attr(docsrs, doc(cfg(feature = "channel")))]
#[cfg(feature = "std")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::remote_handle::{Remote, RemoteHandle};

#[cfg(feature = "std")]
mod shared;
#[cfg(feature = "std")]
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411
pub use self::shared::{Shared, WeakShared};

impl<T: ?Sized> FutureExt for T where T: Future {}

/// An extension trait for `Future`s that provides a variety of convenient
/// adapters.
pub trait FutureExt: Future {
    /// Map this future's output to a different type, returning a new future of
    /// the resulting type.
    ///
    /// This function is similar to the `Option::map` or `Iterator::map` where
    /// it will change the type of the underlying future. This is useful to
    /// chain along a computation once a future has been resolved.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it, similar to the existing `map` methods in the
    /// standard library.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let future = async { 1 };
    /// let new_future = future.map(|x| x + 3);
    /// assert_eq!(new_future.await, 4);
    /// # });
    /// ```
    fn map<U, F>(self, f: F) -> Map<Self, F>
    where
        F: FnOnce(Self::Output) -> U,
        Self: Sized,
    {
        assert_future::<U, _>(Map::new(self, f))
    }

    /// Map this future's output to a different type, returning a new future of
    /// the resulting type.
    ///
    /// This function is equivalent to calling `map(Into::into)` but allows naming
    /// the return type.
    fn map_into<U>(self) -> MapInto<Self, U>
    where
        Self::Output: Into<U>,
        Self: Sized,
    {
        assert_future::<U, _>(MapInto::new(self))
    }

    /// Chain on a computation for when a future finished, passing the result of
    /// the future to the provided closure `f`.
    ///
    /// The returned value of the closure must implement the `Future` trait
    /// and can represent some more work to be done before the composed future
    /// is finished.
    ///
    /// The closure `f` is only run *after* successful completion of the `self`
    /// future.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let future_of_1 = async { 1 };
    /// let future_of_4 = future_of_1.then(|x| async move { x + 3 });
    /// assert_eq!(future_of_4.await, 4);
    /// # });
    /// ```
    fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
    where
        F: FnOnce(Self::Output) -> Fut,
        Fut: Future,
        Self: Sized,
    {
        assert_future::<Fut::Output, _>(Then::new(self, f))
    }

    /// Wrap this future in an `Either` future, making it the left-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `right_future` method to write `if`
    /// statements that evaluate to different futures in different branches.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let x = 6;
    /// let future = if x < 10 {
    ///     async { true }.left_future()
    /// } else {
    ///     async { false }.right_future()
    /// };
    ///
    /// assert_eq!(future.await, true);
    /// # });
    /// ```
    fn left_future<B>(self) -> Either<Self, B>
    where
        B: Future<Output = Self::Output>,
        Self: Sized,
    {
        assert_future::<Self::Output, _>(Either::Left(self))
    }

    /// Wrap this future in an `Either` future, making it the right-hand variant
    /// of that `Either`.
    ///
    /// This can be used in combination with the `left_future` method to write `if`
    /// statements that evaluate to different futures in different branches.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let x = 6;
    /// let future = if x > 10 {
    ///     async { true }.left_future()
    /// } else {
    ///     async { false }.right_future()
    /// };
    ///
    /// assert_eq!(future.await, false);
    /// # });
    /// ```
    fn right_future<A>(self) -> Either<A, Self>
    where
        A: Future<Output = Self::Output>,
        Self: Sized,
    {
        assert_future::<Self::Output, _>(Either::Right(self))
    }

    /// Convert this future into a single element stream.
    ///
    /// The returned stream contains single success if this future resolves to
    /// success or single error if this future resolves into error.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    /// use futures::stream::StreamExt;
    ///
    /// let future = async { 17 };
    /// let stream = future.into_stream();
    /// let collected: Vec<_> = stream.collect().await;
    /// assert_eq!(collected, vec![17]);
    /// # });
    /// ```
    fn into_stream(self) -> IntoStream<Self>
    where
        Self: Sized,
    {
        assert_stream::<Self::Output, _>(IntoStream::new(self))
    }

    /// Flatten the execution of this future when the output of this
    /// future is itself another future.
    ///
    /// This can be useful when combining futures together to flatten the
    /// computation out the final result.
    ///
    /// This method is roughly equivalent to `self.then(|x| x)`.
    ///
    /// Note that this function consumes the receiving future and returns a
    /// wrapped version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let nested_future = async { async { 1 } };
    /// let future = nested_future.flatten();
    /// assert_eq!(future.await, 1);
    /// # });
    /// ```
    fn flatten(self) -> Flatten<Self>
    where
        Self::Output: Future,
        Self: Sized,
    {
        let f = Flatten::new(self);
        assert_future::<<<Self as Future>::Output as Future>::Output, _>(f)
    }

    /// Flatten the execution of this future when the successful result of this
    /// future is a stream.
    ///
    /// This can be useful when stream initialization is deferred, and it is
    /// convenient to work with that stream as if stream was available at the
    /// call site.
    ///
    /// Note that this function consumes this future and returns a wrapped
    /// version of it.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    /// use futures::stream::{self, StreamExt};
    ///
    /// let stream_items = vec![17, 18, 19];
    /// let future_of_a_stream = async { stream::iter(stream_items) };
    ///
    /// let stream = future_of_a_stream.flatten_stream();
    /// let list: Vec<_> = stream.collect().await;
    /// assert_eq!(list, vec![17, 18, 19]);
    /// # });
    /// ```
    fn flatten_stream(self) -> FlattenStream<Self>
    where
        Self::Output: Stream,
        Self: Sized,
    {
        assert_stream::<<Self::Output as Stream>::Item, _>(FlattenStream::new(self))
    }

    /// Fuse a future such that `poll` will never again be called once it has
    /// completed. This method can be used to turn any `Future` into a
    /// `FusedFuture`.
    ///
    /// Normally, once a future has returned `Poll::Ready` from `poll`,
    /// any further calls could exhibit bad behavior such as blocking
    /// forever, panicking, never returning, etc. If it is known that `poll`
    /// may be called too often then this method can be used to ensure that it
    /// has defined semantics.
    ///
    /// If a `fuse`d future is `poll`ed after having returned `Poll::Ready`
    /// previously, it will return `Poll::Pending`, from `poll` again (and will
    /// continue to do so for all future calls to `poll`).
    ///
    /// This combinator will drop the underlying future as soon as it has been
    /// completed to ensure resources are reclaimed as soon as possible.
    fn fuse(self) -> Fuse<Self>
    where
        Self: Sized,
    {
        let f = Fuse::new(self);
        assert_future::<Self::Output, _>(f)
    }

    /// Do something with the output of a future before passing it on.
    ///
    /// When using futures, you'll often chain several of them together.  While
    /// working on such code, you might want to check out what's happening at
    /// various parts in the pipeline, without consuming the intermediate
    /// value. To do that, insert a call to `inspect`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let future = async { 1 };
    /// let new_future = future.inspect(|&x| println!("about to resolve: {}", x));
    /// assert_eq!(new_future.await, 1);
    /// # });
    /// ```
    fn inspect<F>(self, f: F) -> Inspect<Self, F>
    where
        F: FnOnce(&Self::Output),
        Self: Sized,
    {
        assert_future::<Self::Output, _>(Inspect::new(self, f))
    }

    /// Catches unwinding panics while polling the future.
    ///
    /// In general, panics within a future can propagate all the way out to the
    /// task level. This combinator makes it possible to halt unwinding within
    /// the future itself. It's most commonly used within task executors. It's
    /// not recommended to use this for error handling.
    ///
    /// Note that this method requires the `UnwindSafe` bound from the standard
    /// library. This isn't always applied automatically, and the standard
    /// library provides an `AssertUnwindSafe` wrapper type to apply it
    /// after-the fact. To assist using this method, the `Future` trait is also
    /// implemented for `AssertUnwindSafe<F>` where `F` implements `Future`.
    ///
    /// This method is only available when the `std` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::{self, FutureExt, Ready};
    ///
    /// let future = future::ready(2);
    /// assert!(future.catch_unwind().await.is_ok());
    ///
    /// let future = future::lazy(|_| -> Ready<i32> {
    ///     unimplemented!()
    /// });
    /// assert!(future.catch_unwind().await.is_err());
    /// # });
    /// ```
    #[cfg(feature = "std")]
    fn catch_unwind(self) -> CatchUnwind<Self>
    where
        Self: Sized + ::std::panic::UnwindSafe,
    {
        assert_future::<Result<Self::Output, Box<dyn std::any::Any + Send>>, _>(CatchUnwind::new(
            self,
        ))
    }

    /// Create a cloneable handle to this future where all handles will resolve
    /// to the same result.
    ///
    /// The `shared` combinator method provides a method to convert any future
    /// into a cloneable future. It enables a future to be polled by multiple
    /// threads.
    ///
    /// This method is only available when the `std` feature of this
    /// library is activated, and it is activated by default.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    ///
    /// let future = async { 6 };
    /// let shared1 = future.shared();
    /// let shared2 = shared1.clone();
    ///
    /// assert_eq!(6, shared1.await);
    /// assert_eq!(6, shared2.await);
    /// # });
    /// ```
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::FutureExt;
    /// use futures::executor::block_on;
    /// use std::thread;
    ///
    /// let future = async { 6 };
    /// let shared1 = future.shared();
    /// let shared2 = shared1.clone();
    /// let join_handle = thread::spawn(move || {
    ///     assert_eq!(6, block_on(shared2));
    /// });
    /// assert_eq!(6, shared1.await);
    /// join_handle.join().unwrap();
    /// # });
    /// ```
    #[cfg(feature = "std")]
    fn shared(self) -> Shared<Self>
    where
        Self: Sized,
        Self::Output: Clone,
    {
        assert_future::<Self::Output, _>(Shared::new(self))
    }

    /// Turn this future into a future that yields `()` on completion and sends
    /// its output to another future on a separate task.
    ///
    /// This can be used with spawning executors to easily retrieve the result
    /// of a future executing on a separate task or thread.
    ///
    /// This method is only available when the `std` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "channel")]
    #[cfg_attr(docsrs, doc(cfg(feature = "channel")))]
    #[cfg(feature = "std")]
    fn remote_handle(self) -> (Remote<Self>, RemoteHandle<Self::Output>)
    where
        Self: Sized,
    {
        let (wrapped, handle) = remote_handle::remote_handle(self);
        (assert_future::<(), _>(wrapped), handle)
    }

    /// Wrap the future in a Box, pinning it.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "alloc")]
    fn boxed<'a>(self) -> BoxFuture<'a, Self::Output>
    where
        Self: Sized + Send + 'a,
    {
        assert_future::<Self::Output, _>(Box::pin(self))
    }

    /// Wrap the future in a Box, pinning it.
    ///
    /// Similar to `boxed`, but without the `Send` requirement.
    ///
    /// This method is only available when the `std` or `alloc` feature of this
    /// library is activated, and it is activated by default.
    #[cfg(feature = "alloc")]
    fn boxed_local<'a>(self) -> LocalBoxFuture<'a, Self::Output>
    where
        Self: Sized + 'a,
    {
        assert_future::<Self::Output, _>(Box::pin(self))
    }

    /// Turns a [`Future<Output = T>`](Future) into a
    /// [`TryFuture<Ok = T, Error = ()`>](futures_core::future::TryFuture).
    fn unit_error(self) -> UnitError<Self>
    where
        Self: Sized,
    {
        assert_future::<Result<Self::Output, ()>, _>(UnitError::new(self))
    }

    /// Turns a [`Future<Output = T>`](Future) into a
    /// [`TryFuture<Ok = T, Error = Never`>](futures_core::future::TryFuture).
    fn never_error(self) -> NeverError<Self>
    where
        Self: Sized,
    {
        assert_future::<Result<Self::Output, Never>, _>(NeverError::new(self))
    }

    /// A convenience for calling `Future::poll` on `Unpin` future types.
    fn poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Self::Output>
    where
        Self: Unpin,
    {
        Pin::new(self).poll(cx)
    }

    /// Evaluates and consumes the future, returning the resulting output if
    /// the future is ready after the first call to `Future::poll`.
    ///
    /// If `poll` instead returns `Poll::Pending`, `None` is returned.
    ///
    /// This method is useful in cases where immediacy is more important than
    /// waiting for a result. It is also convenient for quickly obtaining
    /// the value of a future that is known to always resolve immediately.
    ///
    /// # Examples
    ///
    /// ```
    /// # use futures::prelude::*;
    /// use futures::{future::ready, future::pending};
    /// let future_ready = ready("foobar");
    /// let future_pending = pending::<&'static str>();
    ///
    /// assert_eq!(future_ready.now_or_never(), Some("foobar"));
    /// assert_eq!(future_pending.now_or_never(), None);
    /// ```
    ///
    /// In cases where it is absolutely known that a future should always
    /// resolve immediately and never return `Poll::Pending`, this method can
    /// be combined with `expect()`:
    ///
    /// ```
    /// # use futures::{prelude::*, future::ready};
    /// let future_ready = ready("foobar");
    ///
    /// assert_eq!(future_ready.now_or_never().expect("Future not ready"), "foobar");
    /// ```
    fn now_or_never(self) -> Option<Self::Output>
    where
        Self: Sized,
    {
        let noop_waker = crate::task::noop_waker();
        let mut cx = Context::from_waker(&noop_waker);

        let this = self;
        pin_mut!(this);
        match this.poll(&mut cx) {
            Poll::Ready(x) => Some(x),
            _ => None,
        }
    }
}