1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
use core::cell::Cell;
use core::future::Future;
use core::num::NonZeroU32;
use core::pin::Pin;
use core::ptr::{self, NonNull};
use core::sync::atomic::{AtomicBool, Ordering};
use core::task::{Context, Poll};
#[cfg(feature = "alloc")]
extern crate alloc;
use esp_idf_sys::*;
use crate::cpu::Core;
use crate::interrupt;
#[cfg(not(any(
esp_idf_version_major = "4",
esp_idf_version = "5.0",
esp_idf_version = "5.1"
)))]
const NO_AFFINITY: core::ffi::c_int = CONFIG_FREERTOS_NO_AFFINITY as _;
#[cfg(any(
esp_idf_version_major = "4",
esp_idf_version = "5.0",
esp_idf_version = "5.1"
))]
const NO_AFFINITY: core::ffi::c_uint = tskNO_AFFINITY;
/// Creates a FreeRTOS task.
///
/// This API is to be used only for niche use cases like where the `std` feature is not enabled, or one absolutely
/// needs to create a raw FreeRTOS task.
///
/// In all other cases, the standard, safe Rust `std::thread` API should be utilized, as it is anyway
/// a thin wrapper around the FreeRTOS task API.
///
/// # Safety
///
/// Only marked as unsafe fo symmetry with `destroy` and to discourage users from leaning on it in favor of `std::thread`.
/// Otherwise, this function is actually safe.
pub unsafe fn create(
task_handler: extern "C" fn(*mut core::ffi::c_void),
task_name: &core::ffi::CStr,
stack_size: usize,
task_arg: *mut core::ffi::c_void,
priority: u8,
pin_to_core: Option<Core>,
) -> Result<TaskHandle_t, EspError> {
let mut task: TaskHandle_t = core::ptr::null_mut();
let created = xTaskCreatePinnedToCore(
Some(task_handler),
task_name.as_ptr(),
stack_size as _,
task_arg,
priority as _,
&mut task,
pin_to_core.map(Into::into).unwrap_or(NO_AFFINITY as _),
);
if created == 0 {
Err(EspError::from_infallible::<ESP_FAIL>())
} else {
Ok(task)
}
}
/// Deletes a FreeRTOS task.
///
/// This API is to be used only for niche use cases like where the `std` feature is not enabled, or one absolutely
/// needs to create a raw FreeRTOS task.
///
/// In all other cases, the standard, safe Rust `std::thread` API should be utilized, as it is anyway
/// a thin wrapper around the FreeRTOS task API.
///
/// # Safety
///
/// A valid `TaskHandle_t` instance of an existing task should be provided.
/// Providing a `TaskHandle_t` of a task which was already destroyed is an undefined behavior.
pub unsafe fn destroy(task: TaskHandle_t) {
vTaskDelete(task)
}
#[inline(always)]
#[link_section = ".iram1.interrupt_task_do_yield"]
pub fn do_yield() {
if interrupt::active() {
unsafe {
if let Some((yielder, arg)) = interrupt::get_isr_yielder() {
yielder(arg);
} else {
#[cfg(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6))]
vPortYieldFromISR();
#[cfg(all(
not(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6)),
esp_idf_version_major = "4"
))]
vPortEvaluateYieldFromISR(0);
#[cfg(all(
not(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6)),
not(esp_idf_version_major = "4")
))]
_frxt_setup_switch();
}
}
} else {
unsafe {
vPortYield();
}
}
}
#[inline(always)]
#[link_section = ".iram1.interrupt_task_current"]
pub fn current() -> Option<TaskHandle_t> {
if interrupt::active() {
None
} else {
Some(unsafe { xTaskGetCurrentTaskHandle() })
}
}
pub fn wait_notification(timeout: TickType_t) -> Option<NonZeroU32> {
let mut notification = 0_u32;
let notified =
unsafe { xTaskGenericNotifyWait(0, 0, u32::MAX, &mut notification, timeout) } != 0;
if notified {
NonZeroU32::new(notification)
} else {
None
}
}
/// # Safety
///
/// When calling this function care should be taken to pass a valid
/// FreeRTOS task handle. Moreover, the FreeRTOS task should be valid
/// when this function is being called.
pub unsafe fn notify_and_yield(task: TaskHandle_t, notification: NonZeroU32) -> bool {
let (notified, higher_prio_task_woken) = notify(task, notification);
if higher_prio_task_woken {
do_yield();
}
notified
}
/// # Safety
///
/// When calling this function care should be taken to pass a valid
/// FreeRTOS task handle. Moreover, the FreeRTOS task should be valid
/// when this function is being called.
pub unsafe fn notify(task: TaskHandle_t, notification: NonZeroU32) -> (bool, bool) {
let (notified, higher_prio_task_woken) = if interrupt::active() {
let mut higher_prio_task_woken: BaseType_t = Default::default();
let notified = xTaskGenericNotifyFromISR(
task,
0,
notification.into(),
eNotifyAction_eSetBits,
ptr::null_mut(),
&mut higher_prio_task_woken,
);
(notified, higher_prio_task_woken)
} else {
let notified = xTaskGenericNotify(
task,
0,
notification.into(),
eNotifyAction_eSetBits,
ptr::null_mut(),
);
(notified, 0)
};
(notified != 0, higher_prio_task_woken != 0)
}
pub fn get_idle_task(core: crate::cpu::Core) -> TaskHandle_t {
#[cfg(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6))]
{
if matches!(core, crate::cpu::Core::Core0) {
unsafe { xTaskGetIdleTaskHandle() }
} else {
unreachable!()
}
}
#[cfg(not(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6)))]
#[cfg(any(
esp_idf_version_major = "4",
esp_idf_version = "5.0",
esp_idf_version = "5.1"
))]
unsafe {
xTaskGetIdleTaskHandleForCPU(core as u32)
}
#[cfg(not(any(esp32c3, esp32c2, esp32h2, esp32c5, esp32c6)))]
#[cfg(not(any(
esp_idf_version_major = "4",
esp_idf_version = "5.0",
esp_idf_version = "5.1"
)))]
unsafe {
xTaskGetIdleTaskHandleForCore(core as i32)
}
}
/// Executes the supplied future on the current thread, thus blocking it until the future becomes ready.
#[cfg(feature = "alloc")]
pub fn block_on<F>(mut fut: F) -> F::Output
where
F: Future,
{
::log::trace!("block_on(): started");
let notification = notification::Notification::new();
let mut fut = core::pin::pin!(fut);
let waker = notification.notifier().into();
let mut cx = Context::from_waker(&waker);
let res = loop {
match fut.as_mut().poll(&mut cx) {
Poll::Ready(res) => break res,
Poll::Pending => notification.wait_any(),
}
};
::log::trace!("block_on(): finished");
res
}
/// Yield from the current task once, allowing other tasks to run.
///
/// This can be used to easily and quickly implement simple async primitives
/// without using wakers. The following snippet will wait for a condition to
/// hold, while still allowing other tasks to run concurrently (not monopolizing
/// the executor thread).
///
/// ```rust,no_run
/// while !some_condition() {
/// yield_now().await;
/// }
/// ```
///
/// The downside is this will spin in a busy loop, using 100% of the CPU, while
/// using wakers correctly would allow the CPU to sleep while waiting.
///
/// The internal implementation is: on first poll the future wakes itself and
/// returns `Poll::Pending`. On second poll, it returns `Poll::Ready`.
pub fn yield_now() -> impl Future<Output = ()> {
YieldNowFuture { yielded: false }
}
#[must_use = "futures do nothing unless you `.await` or poll them"]
struct YieldNowFuture {
yielded: bool,
}
impl Future for YieldNowFuture {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if self.yielded {
Poll::Ready(())
} else {
self.yielded = true;
cx.waker().wake_by_ref();
Poll::Pending
}
}
}
#[cfg(esp_idf_comp_pthread_enabled)]
pub mod thread {
use core::ffi::CStr;
use enumset::EnumSetType;
#[cfg(not(any(
esp_idf_version_major = "4",
all(esp_idf_version_major = "5", esp_idf_version_minor = "0"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "1"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "2"),
)))] // ESP-IDF 5.3 and later
use enumset::EnumSet;
use esp_idf_sys::*;
use super::NO_AFFINITY;
use crate::cpu::Core;
/// Flags to indicate the capabilities of the various memo
///
/// Used together with EnumSet
/// `let flags = MallocCap:Default | MallocCap:Cap_8bit`
#[derive(Debug, EnumSetType)]
#[enumset(repr = "u32")] // Note: following value variants represent the bitposition **not** a literal u32 value in an EnumSet<MallocCap>
pub enum MallocCap {
// Memory must be able to run executable code
Exec = 0,
// Memory must allow for aligned 32-bit data accesses
Cap32bit = 1,
// Memory must allow for 8/16/...-bit data accesses
Cap8bit = 2,
// Memory must be able to accessed by DMA
Dma = 3,
// Memory must be mapped to PID2 memory space (PIDs are not currently used)
Pid2 = 4,
// Memory must be mapped to PID3 memory space (PIDs are not currently used)
Pid3 = 5,
// Memory must be mapped to PID4 memory space (PIDs are not currently used)
Pid4 = 6,
// Memory must be mapped to PID5 memory space (PIDs are not currently used)
Pid5 = 7,
// Memory must be mapped to PID6 memory space (PIDs are not currently used)
Pid6 = 8,
// Memory must be mapped to PID7 memory space (PIDs are not currently used)
Pid7 = 9,
// Memory must be in SPI RAM
Spiram = 10,
// Memory must be internal; specifically it should not disappear when flash/spiram cache is switched off
Internal = 11,
// Memory can be returned in a non-capability-specific memory allocation (e.g. malloc(), calloc()) call
Default = 12,
// Memory must be in IRAM and allow unaligned access
Iram8bit = 13,
// Memory must be able to accessed by retention DMA
Retention = 14,
// Memory must be in RTC fast memory
Rtcram = 15,
// Memory must be in TCM memory
Tcm = 16,
// Memory can't be used / list end marker
Invalid = 31,
}
#[derive(Debug)]
pub struct ThreadSpawnConfiguration {
pub name: Option<&'static [u8]>,
pub stack_size: usize,
pub priority: u8,
pub inherit: bool,
pub pin_to_core: Option<Core>,
#[cfg(not(any(
esp_idf_version_major = "4",
all(esp_idf_version_major = "5", esp_idf_version_minor = "0"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "1"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "2"),
)))] // ESP-IDF 5.3 and later
pub stack_alloc_caps: EnumSet<MallocCap>,
}
impl ThreadSpawnConfiguration {
pub fn get() -> Option<Self> {
get_conf()
}
pub fn set(&self) -> Result<(), EspError> {
set_conf(self)
}
}
impl Default for ThreadSpawnConfiguration {
fn default() -> Self {
get_default_conf()
}
}
impl From<&ThreadSpawnConfiguration> for esp_pthread_cfg_t {
fn from(conf: &ThreadSpawnConfiguration) -> Self {
Self {
thread_name: conf
.name
.map(|name| name.as_ptr() as _)
.unwrap_or(core::ptr::null()),
stack_size: conf.stack_size as _,
prio: conf.priority as _,
inherit_cfg: conf.inherit,
pin_to_core: conf.pin_to_core.map(Into::into).unwrap_or(NO_AFFINITY as _),
#[cfg(not(any(
esp_idf_version_major = "4",
all(esp_idf_version_major = "5", esp_idf_version_minor = "0"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "1"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "2"),
)))] // ESP-IDF 5.3 and later
stack_alloc_caps: conf.stack_alloc_caps.as_u32(),
}
}
}
impl From<esp_pthread_cfg_t> for ThreadSpawnConfiguration {
fn from(conf: esp_pthread_cfg_t) -> Self {
Self {
name: if conf.thread_name.is_null() {
None
} else {
Some(unsafe {
core::slice::from_raw_parts(
conf.thread_name as _,
c_strlen(conf.thread_name.cast()) + 1,
)
})
},
stack_size: conf.stack_size as _,
priority: conf.prio as _,
inherit: conf.inherit_cfg,
pin_to_core: if conf.pin_to_core == NO_AFFINITY as _ {
None
} else {
Some(conf.pin_to_core.into())
},
#[cfg(not(any(
esp_idf_version_major = "4",
all(esp_idf_version_major = "5", esp_idf_version_minor = "0"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "1"),
all(esp_idf_version_major = "5", esp_idf_version_minor = "2"),
)))] // ESP-IDF 5.3 and later
stack_alloc_caps: EnumSet::<MallocCap>::from_u32(conf.stack_alloc_caps),
}
}
}
fn get_default_conf() -> ThreadSpawnConfiguration {
unsafe { esp_pthread_get_default_config() }.into()
}
fn get_conf() -> Option<ThreadSpawnConfiguration> {
let mut conf: esp_pthread_cfg_t = Default::default();
let res = unsafe { esp_pthread_get_cfg(&mut conf as _) };
if res == ESP_ERR_NOT_FOUND {
None
} else {
Some(conf.into())
}
}
fn set_conf(conf: &ThreadSpawnConfiguration) -> Result<(), EspError> {
if let Some(name) = conf.name {
let _str = CStr::from_bytes_with_nul(name)
.map_err(|_e| panic! {"Missing null byte in provided Thread-Name"});
}
if conf.priority < 1 || conf.priority as u32 >= configMAX_PRIORITIES {
panic!("Thread priority {} has to be [1 - 24]", conf.priority);
}
esp!(unsafe { esp_pthread_set_cfg(&conf.into()) })?;
Ok(())
}
fn c_strlen(c_str: *const u8) -> usize {
let mut offset = 0;
loop {
if *unsafe { c_str.offset(offset).as_ref() }.unwrap() == 0 {
return offset as _;
}
offset += 1;
}
}
}
pub struct CriticalSection(Cell<Option<NonNull<QueueDefinition>>>, AtomicBool);
// Not available in the esp-idf-sys bindings
const QUEUE_TYPE_RECURSIVE_MUTEX: u8 = 4;
#[inline(always)]
#[link_section = ".iram1.cs_enter"]
fn enter(cs: &CriticalSection) {
if !cs.1.load(Ordering::SeqCst) {
interrupt::free(|| {
if !cs.1.load(Ordering::SeqCst) {
let ptr = unsafe { xQueueCreateMutex(QUEUE_TYPE_RECURSIVE_MUTEX) };
cs.0.set(NonNull::new(ptr));
cs.1.store(true, Ordering::SeqCst);
}
});
}
let res =
unsafe { xQueueTakeMutexRecursive(cs.0.get().unwrap().as_ptr(), crate::delay::BLOCK) } != 0;
if !res {
unreachable!();
}
}
#[inline(always)]
#[link_section = ".iram1.cs_exit"]
fn exit(cs: &CriticalSection) {
if !cs.1.load(Ordering::SeqCst) {
panic!("Called exit() without matching enter()");
}
let res = unsafe { xQueueGiveMutexRecursive(cs.0.get().unwrap().as_ptr()) } != 0;
if !res {
unreachable!();
}
}
impl CriticalSection {
/// Constructs a new `CriticalSection` instance
#[inline(always)]
#[link_section = ".iram1.cs_new"]
pub const fn new() -> Self {
Self(Cell::new(None), AtomicBool::new(false))
}
#[inline(always)]
#[link_section = ".iram1.cs_enter"]
pub fn enter(&self) -> CriticalSectionGuard {
enter(self);
CriticalSectionGuard(self)
}
}
impl Drop for CriticalSection {
fn drop(&mut self) {
if self.1.load(Ordering::SeqCst) {
unsafe {
vQueueDelete(self.0.get().unwrap().as_ptr());
}
}
}
}
impl Default for CriticalSection {
#[inline(always)]
#[link_section = ".iram1.cs_default"]
fn default() -> Self {
Self::new()
}
}
unsafe impl Send for CriticalSection {}
unsafe impl Sync for CriticalSection {}
pub struct CriticalSectionGuard<'a>(&'a CriticalSection);
impl<'a> Drop for CriticalSectionGuard<'a> {
#[inline(always)]
#[link_section = ".iram1.csg_drop"]
fn drop(&mut self) {
exit(self.0);
}
}
pub mod watchdog {
//! ## Example
//!
//! ```rust, ignore
//! # fn main() -> Result<()> {
//! let peripherals = Peripherals::take().unwrap();
//!
//! let config = TWDTConfig {
//! duration: Duration::from_secs(2),
//! panic_on_trigger: true,
//! subscribed_idle_tasks: enum_set!(Core::Core0)
//! };
//! let mut driver = esp_idf_hal::task::watchdog::TWDTDriver::new(
//! peripherals.twdt,
//! &config,
//! )?;
//!
//! let mut watchdog = driver.watch_current_task()?;
//!
//! loop {
//! watchdog.feed();
//! unsafe { vTaskDelay(1) };
//! }
//! # }
//! ```
use core::{
marker::PhantomData,
sync::atomic::{AtomicUsize, Ordering},
};
use esp_idf_sys::*;
use crate::peripheral::Peripheral;
pub type TWDTConfig = config::Config;
pub mod config {
#[cfg(not(esp_idf_version_major = "4"))]
use esp_idf_sys::*;
#[derive(Clone)]
pub struct Config {
pub duration: core::time::Duration,
pub panic_on_trigger: bool,
pub subscribed_idle_tasks: enumset::EnumSet<crate::cpu::Core>,
}
impl Config {
// Could be const if enumset operations are const
pub fn new() -> Self {
#[cfg(esp_idf_esp_task_wdt)]
let duration = core::time::Duration::from_secs(
esp_idf_sys::CONFIG_ESP_TASK_WDT_TIMEOUT_S as u64,
);
#[cfg(not(esp_idf_esp_task_wdt))]
let duration = core::time::Duration::from_secs(5);
Self {
duration,
panic_on_trigger: cfg!(esp_idf_esp_task_wdt_panic),
subscribed_idle_tasks: {
let mut subscribed_idle_tasks = enumset::EnumSet::empty();
if cfg!(esp_idf_esp_task_wdt_check_idle_task_cpu0) {
subscribed_idle_tasks |= crate::cpu::Core::Core0;
}
#[cfg(any(esp32, esp32s3))]
if cfg!(esp_idf_esp_task_wdt_check_idle_task_cpu1) {
subscribed_idle_tasks |= crate::cpu::Core::Core1;
}
subscribed_idle_tasks
},
}
}
}
impl Default for Config {
fn default() -> Self {
Self::new()
}
}
#[cfg(not(esp_idf_version_major = "4"))]
impl From<&Config> for esp_task_wdt_config_t {
fn from(config: &Config) -> Self {
esp_task_wdt_config_t {
timeout_ms: config.duration.as_millis() as u32,
trigger_panic: config.panic_on_trigger,
idle_core_mask: config.subscribed_idle_tasks.as_u32(),
}
}
}
}
pub struct TWDTDriver<'d> {
init_by_idf: bool,
_marker: PhantomData<&'d mut ()>,
}
static TWDT_DRIVER_REF_COUNT: AtomicUsize = AtomicUsize::new(0);
impl<'d> TWDTDriver<'d> {
pub fn new(
_twdt: impl Peripheral<P = TWDT> + 'd,
config: &config::Config,
) -> Result<Self, EspError> {
TWDT_DRIVER_REF_COUNT.fetch_add(1, Ordering::SeqCst);
let init_by_idf = Self::watchdog_is_init_by_idf();
#[cfg(not(esp_idf_version_major = "4"))]
if !init_by_idf {
esp!(unsafe { esp_task_wdt_init(&config.into() as *const esp_task_wdt_config_t) })?;
} else {
esp!(unsafe {
esp_task_wdt_reconfigure(&config.into() as *const esp_task_wdt_config_t)
})?;
}
#[cfg(esp_idf_version_major = "4")]
esp!(unsafe {
esp_task_wdt_init(config.duration.as_secs() as u32, config.panic_on_trigger)
})?;
#[cfg(esp_idf_version_major = "4")]
if let Err(e) = Self::subscribe_idle_tasks(config.subscribed_idle_tasks) {
// error task already subscribed could occur but it's ok (not checking if tasks already subscribed before)
if e.code() != ESP_ERR_INVALID_ARG {
return Err(e);
}
}
Ok(Self {
init_by_idf,
_marker: Default::default(),
})
}
pub fn watch_current_task(&mut self) -> Result<WatchdogSubscription<'_>, EspError> {
esp!(unsafe { esp_task_wdt_add(core::ptr::null_mut()) })?;
Ok(WatchdogSubscription::new())
}
#[cfg(esp_idf_version_major = "4")]
fn subscribe_idle_tasks(cores: enumset::EnumSet<crate::cpu::Core>) -> Result<(), EspError> {
for core in cores {
let task = super::get_idle_task(core);
esp!(unsafe { esp_task_wdt_add(task) })?;
}
Ok(())
}
#[cfg(esp_idf_version_major = "4")]
fn unsubscribe_idle_tasks() -> Result<(), EspError> {
for core in enumset::EnumSet::<crate::cpu::Core>::all() {
let task = super::get_idle_task(core);
esp!(unsafe { esp_task_wdt_delete(task) })?;
}
Ok(())
}
fn watchdog_is_init_by_idf() -> bool {
if cfg!(not(any(
esp_idf_version_major = "4",
esp_idf_version = "5.0"
))) {
cfg!(esp_idf_esp_task_wdt_init)
} else {
!matches!(
unsafe { esp_task_wdt_status(core::ptr::null_mut()) },
ESP_ERR_INVALID_STATE
)
}
}
fn deinit(&self) -> Result<(), EspError> {
if !self.init_by_idf {
#[cfg(esp_idf_version_major = "4")]
if let Err(e) = Self::unsubscribe_idle_tasks() {
// error task not subscribed could occur but it's ok (not checking if tasks subscribed before)
if e.code() != ESP_ERR_INVALID_ARG {
return Err(e);
}
}
esp!(unsafe { esp_task_wdt_deinit() }).unwrap();
}
Ok(())
}
}
impl Clone for TWDTDriver<'_> {
fn clone(&self) -> Self {
TWDT_DRIVER_REF_COUNT.fetch_add(1, Ordering::SeqCst);
Self {
init_by_idf: self.init_by_idf,
_marker: Default::default(),
}
}
}
impl Drop for TWDTDriver<'_> {
fn drop(&mut self) {
let refcnt = TWDT_DRIVER_REF_COUNT.fetch_sub(1, Ordering::SeqCst);
match refcnt {
1 => self.deinit().unwrap(),
r if r < 1 => unreachable!(), // Bug, should never happen
_ => (),
}
}
}
unsafe impl Send for TWDTDriver<'_> {}
pub struct WatchdogSubscription<'s>(PhantomData<&'s mut ()>);
impl WatchdogSubscription<'_> {
fn new() -> Self {
Self(Default::default())
}
pub fn feed(&mut self) -> Result<(), EspError> {
esp!(unsafe { esp_task_wdt_reset() })
}
}
impl embedded_hal_0_2::watchdog::Watchdog for WatchdogSubscription<'_> {
fn feed(&mut self) {
Self::feed(self).unwrap()
}
}
impl Drop for WatchdogSubscription<'_> {
fn drop(&mut self) {
esp!(unsafe { esp_task_wdt_delete(core::ptr::null_mut()) }).unwrap();
}
}
crate::impl_peripheral!(TWDT);
}
#[cfg(feature = "critical-section")]
pub mod critical_section {
static CS: super::CriticalSection = super::CriticalSection::new();
pub struct EspCriticalSection {}
unsafe impl critical_section::Impl for EspCriticalSection {
unsafe fn acquire() {
super::enter(&CS);
}
unsafe fn release(_token: ()) {
super::exit(&CS);
}
}
pub type LinkWorkaround = [*mut (); 2];
static mut __INTERNAL_REFERENCE: LinkWorkaround = [
_critical_section_1_0_acquire as *mut _,
_critical_section_1_0_release as *mut _,
];
pub fn link() -> LinkWorkaround {
unsafe { __INTERNAL_REFERENCE }
}
critical_section::set_impl!(EspCriticalSection);
}
pub mod embassy_sync {
use embassy_sync::blocking_mutex::raw::RawMutex;
/// A mutex that allows borrowing data across executors but NOT accross interrupts.
///
/// # Safety
///
/// This mutex is safe to share between different executors.
pub struct EspRawMutex(super::CriticalSection);
unsafe impl Send for EspRawMutex {}
unsafe impl Sync for EspRawMutex {}
impl Default for EspRawMutex {
fn default() -> Self {
Self::new()
}
}
impl EspRawMutex {
/// Create a new `EspRawMutex`.
pub const fn new() -> Self {
Self(super::CriticalSection::new())
}
}
unsafe impl RawMutex for EspRawMutex {
#[allow(clippy::declare_interior_mutable_const)]
const INIT: Self = Self::new();
fn lock<R>(&self, f: impl FnOnce() -> R) -> R {
let _guard = self.0.enter();
f()
}
}
}
#[cfg(all(feature = "alloc", target_has_atomic = "ptr"))]
pub mod notification {
use core::marker::PhantomData;
use core::num::NonZeroU32;
use core::sync::atomic::{AtomicPtr, Ordering};
extern crate alloc;
use alloc::sync::Arc;
use alloc::task::Wake;
use esp_idf_sys::TickType_t;
use crate::task;
#[cfg(esp_idf_version_major = "4")]
type Task = core::ffi::c_void;
#[cfg(not(esp_idf_version_major = "4"))]
type Task = esp_idf_sys::tskTaskControlBlock;
pub struct Notification(Arc<Notifier>, PhantomData<*const ()>);
impl Notification {
pub fn new() -> Self {
Self(
Arc::new(Notifier(AtomicPtr::new(task::current().unwrap()))),
PhantomData,
)
}
pub fn notifier(&self) -> Arc<Notifier> {
self.0.clone()
}
pub fn wait_any(&self) {
loop {
if task::wait_notification(crate::delay::BLOCK).is_some() {
break;
}
}
}
pub fn wait(&self, timeout: TickType_t) -> Option<NonZeroU32> {
task::wait_notification(timeout)
}
}
impl Default for Notification {
fn default() -> Self {
Self::new()
}
}
pub struct Notifier(AtomicPtr<Task>);
impl Notifier {
/// # Safety
///
/// This method is unsafe because it is possible to call `core::mem::forget` on the Monitor instance
/// that produced this notifier.
///
/// If that happens, the `Drop` dtor of `Monitor` will NOT be called, which - in turn - means that the
/// `Arc` holding the task reference will stick around even when the actual task where the `Monitor` instance was
/// created no longer exists. Which - in turn - would mean that the method will be trying to notify a task
/// which does no longer exist, which would lead to UB and specifically - to memory corruption.
pub unsafe fn notify(&self, notification: NonZeroU32) -> (bool, bool) {
let freertos_task = self.0.load(Ordering::SeqCst);
if !freertos_task.is_null() {
return unsafe { task::notify(freertos_task, notification) };
}
(false, false)
}
/// # Safety
///
/// This method is unsafe because it is possible to call `core::mem::forget` on the Monitor instance
/// that produced this notifier.
///
/// If that happens, the `Drop` dtor of `Monitor` will NOT be called, which - in turn - means that the
/// `Arc` holding the task reference will stick around even when the actual task where the `Monitor` instance was
/// created no longer exists. Which - in turn - would mean that the method will be trying to notify a task
/// which does no longer exist, which would lead to UB and specifically - to memory corruption.
pub unsafe fn notify_and_yield(&self, notification: NonZeroU32) -> bool {
let freertos_task = self.0.load(Ordering::SeqCst);
if !freertos_task.is_null() {
unsafe { task::notify_and_yield(freertos_task, notification) }
} else {
false
}
}
}
impl Wake for Notifier {
fn wake(self: Arc<Self>) {
unsafe {
self.notify_and_yield(NonZeroU32::new(1).unwrap());
}
}
}
}
pub mod queue {
use core::{
marker::PhantomData,
mem::{size_of, MaybeUninit},
};
use esp_idf_sys::{EspError, TickType_t, ESP_FAIL};
use crate::sys;
/// Thin wrapper on top of the FreeRTOS queue.
///
/// This may be preferable over a Rust channel
/// in cases where an ISR needs to send or receive
/// data as it is safe to use in ISR contexts.
pub struct Queue<T> {
ptr: sys::QueueHandle_t,
is_owned: bool,
_marker: PhantomData<T>,
}
unsafe impl<T> Send for Queue<T> where T: Send + Sync {}
unsafe impl<T> Sync for Queue<T> where T: Send + Sync {}
impl<T> Queue<T>
where
// ensures the contained elements are not `Drop`
// might be able to lift restriction in the future
T: Copy,
{
/// Allocate a new queue on the heap.
pub fn new(size: usize) -> Self {
Queue {
ptr: unsafe { sys::xQueueGenericCreate(size as u32, size_of::<T>() as u32, 0) },
is_owned: true,
_marker: PhantomData,
}
}
/// Create a new queue which is not deleted on `Drop`, but owned by somebody else.
///
/// # Safety
///
/// Care must be taken that the queue is valid for the constructed
/// lifetime.
pub unsafe fn new_borrowed(ptr: sys::QueueHandle_t) -> Self {
assert!(!ptr.is_null());
Queue {
ptr,
is_owned: false,
_marker: PhantomData,
}
}
/// Retrieves the underlying FreeRTOS handle.
#[inline]
#[link_section = "iram1.queue_as_raw"]
pub fn as_raw(&self) -> sys::QueueHandle_t {
self.ptr
}
/// Copy item to back of queue, blocking for `timeout` ticks if full.
///
/// # ISR safety
///
/// This function is safe to call in ISR contexts.
///
/// # Parameters
///
/// * `item` the item to push onto the back of the queue
/// * `timeout` specifies how long to block. Ignored in ISR context.
///
/// # Returns
///
/// Will return an error if queue is full.
/// If this function is executed in an ISR context,
/// it will return true if a higher priority task was awoken.
/// In non-ISR contexts, the function will always return `false`.
/// In this case the interrupt should call [`crate::task::do_yield`].
#[inline]
#[link_section = "iram1.queue_send_back"]
pub fn send_back(&self, item: T, timeout: TickType_t) -> Result<bool, EspError> {
self.send_generic(item, timeout, 0)
}
/// Copy item to front of queue, blocking for `timeout` ticks if full.
/// This can be used for hight priority messages which should be processed
/// sooner.
///
/// # ISR safety
///
/// This function is safe to call in ISR contexts.
///
/// # Parameters
///
/// * `item` the item to push to front of the queue
/// * `timeout` specifies how long to block. Ignored in ISR context.
///
/// # Returns
///
/// Will return an error if queue is full.
/// If this function is executed in an ISR context,
/// it will return true if a higher priority task was awoken.
/// In non-ISR contexts, the function will always return `false`.
/// In this case the interrupt should call [`crate::task::do_yield`].
#[inline]
#[link_section = "iram1.queue_send_front"]
pub fn send_front(&self, item: T, timeout: TickType_t) -> Result<bool, EspError> {
self.send_generic(item, timeout, 1)
}
/// Copy item to queue, blocking for `timeout` ticks if full.
///
/// # ISR safety
///
/// This function is safe to call in ISR contexts.
///
/// # Parameters
///
/// * `item` the item to push to the queue
/// * `timeout` specifies how long to block. Ignored in ISR context.
/// * `copy_position` 0 to push onto back, 1 to push to front
///
/// # Returns
///
/// Will return an error if queue is full.
/// If this function is executed in an ISR context,
/// it will return true if a higher priority task was awoken.
/// In non-ISR contexts, the function will always return `false`.
/// In this case the interrupt should call [`crate::task::do_yield`].
#[inline]
#[link_section = "iram1.queue_send_generic"]
fn send_generic(
&self,
item: T,
timeout: TickType_t,
copy_position: i32,
) -> Result<bool, EspError> {
let mut hp_task_awoken: i32 = false as i32;
let success = unsafe {
if crate::interrupt::active() {
sys::xQueueGenericSendFromISR(
self.ptr,
&item as *const T as *const _,
&mut hp_task_awoken,
copy_position,
)
} else {
sys::xQueueGenericSend(
self.ptr,
&item as *const T as *const _,
timeout,
copy_position,
)
}
};
let success = success == 1;
let hp_task_awoken = hp_task_awoken == 1;
match success {
true => Ok(hp_task_awoken),
false => Err(EspError::from_infallible::<ESP_FAIL>()),
}
}
/// Receive a message from the queue and remove it.
///
/// # ISR safety
///
/// This function is safe to use in ISR contexts
///
/// # Parameters
///
/// * `timeout` specifies how long to block. Ignored in ISR contexts.
///
/// # Returns
///
/// * `None` if no message could be received in time
/// * `Some((message, higher_priority_task_awoken))` otherwise
///
/// The boolean is used for ISRs and indicates if a higher priority task was awoken.
/// In this case the interrupt should call [`crate::task::do_yield`].
/// In non-ISR contexts, the function will always return `false`.
#[inline]
#[link_section = "iram1.queue_recv_front"]
pub fn recv_front(&self, timeout: TickType_t) -> Option<(T, bool)> {
let mut buf = MaybeUninit::uninit();
let mut hp_task_awoken = false as i32;
unsafe {
let success = if crate::interrupt::active() {
sys::xQueueReceiveFromISR(
self.ptr,
buf.as_mut_ptr() as *mut _,
&mut hp_task_awoken,
)
} else {
sys::xQueueReceive(self.ptr, buf.as_mut_ptr() as *mut _, timeout)
};
if success == 1 {
Some((buf.assume_init(), hp_task_awoken == 1))
} else {
None
}
}
}
/// Copy the first message from the queue without removing it.
///
/// # ISR safety
///
/// This function is safe to use in ISR contexts
///
/// # Parameters
///
/// * `timeout` specifies how long to block. Ignored in ISR contexts.
///
/// # Returns
///
/// * `None` if no message could be received in time
/// * `Some(message)` otherwise
///
/// This function does not return a boolean to indicate if
/// a higher priority task was awoken since we don't free
/// up space in the queue and thus cannot unblock anyone.
#[inline]
#[link_section = "iram1.queue_peek_front"]
pub fn peek_front(&self, timeout: TickType_t) -> Option<T> {
let mut buf = MaybeUninit::uninit();
unsafe {
let success = if crate::interrupt::active() {
sys::xQueuePeekFromISR(self.ptr, buf.as_mut_ptr() as *mut _)
} else {
sys::xQueuePeek(self.ptr, buf.as_mut_ptr() as *mut _, timeout)
};
if success == 1 {
Some(buf.assume_init())
} else {
None
}
}
}
}
impl<T> Drop for Queue<T> {
fn drop(&mut self) {
if self.is_owned {
unsafe { sys::vQueueDelete(self.ptr) }
}
}
}
}
pub mod asynch {
use core::future::Future;
use core::num::NonZeroU32;
use core::sync::atomic::{AtomicU32, Ordering};
use core::task::{Context, Poll, Waker};
use atomic_waker::AtomicWaker;
/// Single-slot lock-free signaling primitive supporting signalling with a `u32` bit-set.
///
/// It is useful for sending data between tasks when the receiver only cares about
/// the latest data, and therefore it's fine to "lose" messages. This is often the case for "state"
/// updates.
///
/// The sending part of the primitive is non-blocking, so it is also useful for notifying asynchronous tasks
/// from contexts where blocking or async wait is not possible.
///
/// Similar in spirit to the ESP-IDF FreeRTOS task notifications in that it is light-weight and operates on bit-sets,
/// but for synchronization between an asynchronous task, and another one, which might be blocking or asynchronous.
pub struct Notification {
waker: AtomicWaker,
notified: AtomicU32,
}
impl Default for Notification {
fn default() -> Self {
Self::new()
}
}
impl Notification {
/// Creates a new `Notification`.
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
notified: AtomicU32::new(0),
}
}
/// Marks the least significant bit (bit 0) in this `IsrNotification` as nofified.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify_lsb(&self) -> bool {
self.notify(NonZeroU32::new(1).unwrap())
}
/// Marks the supplied bits in this `Notification` as notified.
/// Returns `true` if there was a registered waker which got awoken.
pub fn notify(&self, bits: NonZeroU32) -> bool {
if let Some(waker) = self.notify_waker(bits) {
waker.wake();
true
} else {
false
}
}
/// A utility to help in implementing a custom `wait` logic:
/// Adds the supplied bits as notified in the notification instance and returns the registered waker (if any).
pub fn notify_waker(&self, bits: NonZeroU32) -> Option<Waker> {
self.notified.fetch_or(bits.into(), Ordering::SeqCst);
self.waker.take()
}
/// Clears the state of this notification by removing any registered waker and setting all bits to 0.
pub fn reset(&self) {
self.waker.take();
self.notified.store(0, Ordering::SeqCst);
}
/// Future that completes when this `Notification` has been notified.
#[allow(unused)]
pub fn wait(&self) -> impl Future<Output = NonZeroU32> + '_ {
core::future::poll_fn(move |cx| self.poll_wait(cx))
}
/// Non-blocking method to check whether this notification has been notified.
pub fn poll_wait(&self, cx: &Context<'_>) -> Poll<NonZeroU32> {
self.waker.register(cx.waker());
let bits = self.notified.swap(0, Ordering::SeqCst);
if let Some(bits) = NonZeroU32::new(bits) {
Poll::Ready(bits)
} else {
Poll::Pending
}
}
}
impl Drop for Notification {
fn drop(&mut self) {
self.reset();
}
}
}