esp_hal/rtc_cntl/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
//! # Real-Time Control and Low-power Management (RTC_CNTL)
//!
//! ## Overview
//!
//! The RTC_CNTL peripheral is responsible for managing the low-power modes on
//! the chip.
//!
//! ## Configuration
//!
//! It also includes the necessary configurations and constants for clock
//! sources and low-power management. The driver provides the following features
//! and functionalities:
//!
//! * Clock Configuration
//! * Calibration
//! * Low-Power Management
//! * Handling Watchdog Timers
//!
//! ## Examples
//!
//! ### Get time in ms from the RTC Timer
//!
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use core::time::Duration;
//! # use esp_hal::{delay::Delay, rtc_cntl::Rtc};
//!
//! let rtc = Rtc::new(peripherals.LPWR);
//! let delay = Delay::new();
//!
//! loop {
//! // Print the current RTC time in milliseconds
//! let time_ms = rtc.current_time().and_utc().timestamp_millis();
//! delay.delay_millis(1000);
//!
//! // Set the time to half a second in the past
//! let new_time = rtc.current_time() - Duration::from_millis(500);
//! rtc.set_current_time(new_time);
//! }
//! # }
//! ```
//!
//! ### RWDT usage
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use core::cell::RefCell;
//! # use critical_section::Mutex;
//! # use esp_hal::delay::Delay;
//! # use esp_hal::rtc_cntl::Rtc;
//! # use esp_hal::rtc_cntl::Rwdt;
//! # use esp_hal::rtc_cntl::RwdtStage;
//! static RWDT: Mutex<RefCell<Option<Rwdt>>> = Mutex::new(RefCell::new(None));
//!
//! let mut delay = Delay::new();
//! let mut rtc = Rtc::new(peripherals.LPWR);
//!
//! rtc.set_interrupt_handler(interrupt_handler);
//! rtc.rwdt.set_timeout(RwdtStage::Stage0, 2000.millis());
//! rtc.rwdt.listen();
//!
//! critical_section::with(|cs| RWDT.borrow_ref_mut(cs).replace(rtc.rwdt));
//! # }
//!
//! // Where the `LP_WDT` interrupt handler is defined as:
//! # use core::cell::RefCell;
//! # use critical_section::Mutex;
//! # use esp_hal::rtc_cntl::Rwdt;
//! # use esp_hal::rtc_cntl::RwdtStage;
//! static RWDT: Mutex<RefCell<Option<Rwdt>>> = Mutex::new(RefCell::new(None));
//!
//! // Handle the corresponding interrupt
//! #[handler]
//! fn interrupt_handler() {
//! critical_section::with(|cs| {
//! println!("RWDT Interrupt");
//!
//! let mut rwdt = RWDT.borrow_ref_mut(cs);
//! let rwdt = rwdt.as_mut().unwrap();
//! rwdt.clear_interrupt();
//!
//! println!("Restarting in 5 seconds...");
//!
//! rwdt.set_timeout(RwdtStage::Stage0, 5000u64.millis());
//! rwdt.unlisten();
//! });
//! }
//! ```
//!
//! ### Get time in ms from the RTC Timer
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use core::time::Duration;
//! # use esp_hal::{delay::Delay, rtc_cntl::Rtc};
//!
//! let rtc = Rtc::new(peripherals.LPWR);
//! let delay = Delay::new();
//!
//! loop {
//! // Get the current RTC time in milliseconds
//! let time_ms = rtc.current_time().and_utc().timestamp_millis();
//! delay.delay_millis(1000);
//!
//! // Set the time to half a second in the past
//! let new_time = rtc.current_time() - Duration::from_millis(500);
//! rtc.set_current_time(new_time);
//! }
//! # }
//! ```
use chrono::{DateTime, NaiveDateTime};
#[cfg(not(any(esp32c6, esp32h2)))]
use fugit::HertzU32;
use fugit::MicrosDurationU64;
pub use self::rtc::SocResetReason;
#[cfg(not(any(esp32c6, esp32h2)))]
use crate::clock::XtalClock;
#[cfg(not(esp32))]
use crate::efuse::Efuse;
#[cfg(not(any(esp32c6, esp32h2)))]
use crate::peripherals::{LPWR, TIMG0};
#[cfg(any(esp32c6, esp32h2))]
use crate::peripherals::{LP_AON, LP_TIMER, LP_WDT};
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
use crate::rtc_cntl::sleep::{RtcSleepConfig, WakeSource, WakeTriggers};
use crate::{
clock::Clock,
interrupt::{self, InterruptConfigurable, InterruptHandler},
peripheral::{Peripheral, PeripheralRef},
peripherals::Interrupt,
reset::{SleepSource, WakeupReason},
Cpu,
};
// only include sleep where it's been implemented
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
pub mod sleep;
#[cfg_attr(esp32, path = "rtc/esp32.rs")]
#[cfg_attr(esp32c2, path = "rtc/esp32c2.rs")]
#[cfg_attr(esp32c3, path = "rtc/esp32c3.rs")]
#[cfg_attr(esp32c6, path = "rtc/esp32c6.rs")]
#[cfg_attr(esp32h2, path = "rtc/esp32h2.rs")]
#[cfg_attr(esp32s2, path = "rtc/esp32s2.rs")]
#[cfg_attr(esp32s3, path = "rtc/esp32s3.rs")]
pub(crate) mod rtc;
#[cfg(any(esp32c6, esp32h2))]
unsafe fn lp_aon<'a>() -> &'a <LP_AON as core::ops::Deref>::Target {
&*LP_AON::PTR
}
#[cfg(not(any(esp32c6, esp32h2)))]
unsafe fn lp_aon<'a>() -> &'a <LPWR as core::ops::Deref>::Target {
&*LPWR::PTR
}
#[cfg(any(esp32c6, esp32h2))]
unsafe fn lp_timer<'a>() -> &'a <LP_TIMER as core::ops::Deref>::Target {
&*LP_TIMER::PTR
}
#[cfg(not(any(esp32c6, esp32h2)))]
unsafe fn lp_timer<'a>() -> &'a <LPWR as core::ops::Deref>::Target {
&*LPWR::PTR
}
#[cfg(any(esp32c6, esp32h2))]
unsafe fn lp_wdt<'a>() -> &'a <LP_WDT as core::ops::Deref>::Target {
&*LP_WDT::PTR
}
#[cfg(not(any(esp32c6, esp32h2)))]
unsafe fn lp_wdt<'a>() -> &'a <LPWR as core::ops::Deref>::Target {
&*LPWR::PTR
}
#[cfg(not(any(esp32c6, esp32h2)))]
#[allow(unused)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(clippy::enum_variant_names)] // FIXME: resolve this
/// RTC SLOW_CLK frequency values
pub(crate) enum RtcFastClock {
/// Main XTAL, divided by 4
RtcFastClockXtalD4 = 0,
/// Internal fast RC oscillator
RtcFastClock8m = 1,
}
#[cfg(not(any(esp32c6, esp32h2)))]
impl Clock for RtcFastClock {
fn frequency(&self) -> HertzU32 {
match self {
RtcFastClock::RtcFastClockXtalD4 => HertzU32::Hz(40_000_000 / 4),
#[cfg(any(esp32, esp32s2))]
RtcFastClock::RtcFastClock8m => HertzU32::Hz(8_500_000),
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
RtcFastClock::RtcFastClock8m => HertzU32::Hz(17_500_000),
}
}
}
#[cfg(not(any(esp32c6, esp32h2)))]
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(clippy::enum_variant_names)] // FIXME: resolve this
/// RTC SLOW_CLK frequency values
pub enum RtcSlowClock {
/// Internal slow RC oscillator
RtcSlowClockRtc = 0,
/// External 32 KHz XTAL
RtcSlowClock32kXtal = 1,
/// Internal fast RC oscillator, divided by 256
RtcSlowClock8mD256 = 2,
}
#[cfg(not(any(esp32c6, esp32h2)))]
impl Clock for RtcSlowClock {
fn frequency(&self) -> HertzU32 {
match self {
#[cfg(esp32)]
RtcSlowClock::RtcSlowClockRtc => HertzU32::Hz(150_000),
#[cfg(esp32s2)]
RtcSlowClock::RtcSlowClockRtc => HertzU32::Hz(90_000),
#[cfg(any(esp32c2, esp32c3, esp32s3))]
RtcSlowClock::RtcSlowClockRtc => HertzU32::Hz(136_000),
RtcSlowClock::RtcSlowClock32kXtal => HertzU32::Hz(32_768),
#[cfg(any(esp32, esp32s2))]
RtcSlowClock::RtcSlowClock8mD256 => HertzU32::Hz(8_500_000 / 256),
#[cfg(any(esp32c2, esp32c3, esp32s3))]
RtcSlowClock::RtcSlowClock8mD256 => HertzU32::Hz(17_500_000 / 256),
}
}
}
#[allow(unused)]
#[cfg(not(any(esp32c6, esp32h2)))]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(clippy::enum_variant_names)] // FIXME: resolve this
/// Clock source to be calibrated using rtc_clk_cal function
pub(crate) enum RtcCalSel {
/// Currently selected RTC SLOW_CLK
RtcCalRtcMux = 0,
/// Internal 8 MHz RC oscillator, divided by 256
RtcCal8mD256 = 1,
/// External 32 KHz XTAL
RtcCal32kXtal = 2,
#[cfg(not(esp32))]
/// Internal 150 KHz RC oscillator
RtcCalInternalOsc = 3,
}
/// Low-power Management
pub struct Rtc<'d> {
_inner: PeripheralRef<'d, crate::peripherals::LPWR>,
/// Reset Watchdog Timer.
pub rwdt: Rwdt,
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
/// Super Watchdog
pub swd: Swd,
}
impl<'d> Rtc<'d> {
/// Create a new instance in [crate::Blocking] mode.
///
/// Optionally an interrupt handler can be bound.
pub fn new(rtc_cntl: impl Peripheral<P = crate::peripherals::LPWR> + 'd) -> Self {
rtc::init();
rtc::configure_clock();
let this = Self {
_inner: rtc_cntl.into_ref(),
rwdt: Rwdt::new(),
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
swd: Swd::new(),
};
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
RtcSleepConfig::base_settings(&this);
this
}
/// Return estimated XTAL frequency in MHz.
pub fn estimate_xtal_frequency(&mut self) -> u32 {
RtcClock::estimate_xtal_frequency()
}
/// Get the time since boot in the raw register units.
fn time_since_boot_raw(&self) -> u64 {
let rtc_cntl = unsafe { lp_timer() };
#[cfg(esp32)]
let (l, h) = {
rtc_cntl.time_update().write(|w| w.time_update().set_bit());
while rtc_cntl.time_update().read().time_valid().bit_is_clear() {
// might take 1 RTC slowclk period, don't flood RTC bus
crate::rom::ets_delay_us(1);
}
let h = rtc_cntl.time1().read().time_hi().bits();
let l = rtc_cntl.time0().read().time_lo().bits();
(l, h)
};
#[cfg(any(esp32c2, esp32c3, esp32s3, esp32s2))]
let (l, h) = {
rtc_cntl.time_update().write(|w| w.time_update().set_bit());
let h = rtc_cntl.time_high0().read().timer_value0_high().bits();
let l = rtc_cntl.time_low0().read().timer_value0_low().bits();
(l, h)
};
#[cfg(any(esp32c6, esp32h2))]
let (l, h) = {
rtc_cntl.update().write(|w| w.main_timer_update().set_bit());
let h = rtc_cntl
.main_buf0_high()
.read()
.main_timer_buf0_high()
.bits();
let l = rtc_cntl.main_buf0_low().read().main_timer_buf0_low().bits();
(l, h)
};
((h as u64) << 32) | (l as u64)
}
/// Get the time since boot.
pub fn time_since_boot(&self) -> MicrosDurationU64 {
MicrosDurationU64::micros(
self.time_since_boot_raw() * 1_000_000
/ RtcClock::slow_freq().frequency().to_Hz() as u64,
)
}
/// Read the current value of the boot time registers in microseconds.
fn boot_time_us(&self) -> u64 {
// For more info on about how RTC setting works and what it has to do with boot time, see https://github.com/esp-rs/esp-hal/pull/1883
// In terms of registers, STORE2 and STORE3 are used on all current chips
// (esp32, esp32p4, esp32h2, esp32c2, esp32c3, esp32c5, esp32c6, esp32c61,
// esp32s2, esp32s3)
// In terms of peripherals:
// - LPWR is used on the following chips: esp32, esp32p4, esp32c2, esp32c3,
// esp32s2, esp32s3
// - LP_AON is used on the following chips: esp32c5, esp32c6, esp32c61, esp32h2
// For registers and peripherals used in esp-idf, see https://github.com/search?q=repo%3Aespressif%2Fesp-idf+RTC_BOOT_TIME_LOW_REG+RTC_BOOT_TIME_HIGH_REG+path%3A**%2Frtc.h&type=code
let rtc_cntl = unsafe { lp_aon() };
let (l, h) = (rtc_cntl.store2(), rtc_cntl.store3());
let l = l.read().bits() as u64;
let h = h.read().bits() as u64;
// https://github.com/espressif/esp-idf/blob/23e4823f17a8349b5e03536ff7653e3e584c9351/components/newlib/port/esp_time_impl.c#L115
l + (h << 32)
}
/// Set the current value of the boot time registers in microseconds.
fn set_boot_time_us(&self, boot_time_us: u64) {
// Please see `boot_time_us` for documentation on registers and peripherals
// used for certain SOCs.
let rtc_cntl = unsafe { lp_aon() };
let (l, h) = (rtc_cntl.store2(), rtc_cntl.store3());
// https://github.com/espressif/esp-idf/blob/23e4823f17a8349b5e03536ff7653e3e584c9351/components/newlib/port/esp_time_impl.c#L102-L103
l.write(|w| unsafe { w.bits((boot_time_us & 0xffffffff) as u32) });
h.write(|w| unsafe { w.bits((boot_time_us >> 32) as u32) });
}
/// Get the current time.
pub fn current_time(&self) -> NaiveDateTime {
// Current time is boot time + time since boot
let rtc_time_us = self.time_since_boot().to_micros();
let boot_time_us = self.boot_time_us();
let wrapped_boot_time_us = u64::MAX - boot_time_us;
// We can detect if we wrapped the boot time by checking if rtc time is greater
// than the amount of time we would've wrapped.
let current_time_us = if rtc_time_us > wrapped_boot_time_us {
// We also just checked that this won't overflow
rtc_time_us - wrapped_boot_time_us
} else {
boot_time_us + rtc_time_us
};
DateTime::from_timestamp_micros(current_time_us as i64)
.unwrap()
.naive_utc()
}
/// Set the current time.
///
/// # Panics
///
/// Panics if `current_time` is before the Unix epoch (meaning the
/// underlying timestamp is negative).
pub fn set_current_time(&self, current_time: NaiveDateTime) {
let current_time_us: u64 = current_time
.and_utc()
.timestamp_micros()
.try_into()
.expect("current_time is negative");
// Current time is boot time + time since boot (rtc time)
// So boot time = current time - time since boot (rtc time)
let rtc_time_us = self.time_since_boot().to_micros();
if current_time_us < rtc_time_us {
// An overflow would happen if we subtracted rtc_time_us from current_time_us.
// To work around this, we can wrap around u64::MAX by subtracting the
// difference between the current time and the time since boot.
// Subtracting time since boot and adding current new time is equivalent and
// avoids overflow. We just checked that rtc_time_us is less than time_us
// so this won't overflow.
self.set_boot_time_us(u64::MAX - rtc_time_us + current_time_us)
} else {
self.set_boot_time_us(current_time_us - rtc_time_us)
}
}
/// Enter deep sleep and wake with the provided `wake_sources`.
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
pub fn sleep_deep(&mut self, wake_sources: &[&dyn WakeSource]) -> ! {
let config = RtcSleepConfig::deep();
self.sleep(&config, wake_sources);
unreachable!();
}
/// Enter light sleep and wake with the provided `wake_sources`.
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
pub fn sleep_light(&mut self, wake_sources: &[&dyn WakeSource]) {
let config = RtcSleepConfig::default();
self.sleep(&config, wake_sources);
}
/// Enter sleep with the provided `config` and wake with the provided
/// `wake_sources`.
#[cfg(any(esp32, esp32s3, esp32c3, esp32c6, esp32c2))]
pub fn sleep(&mut self, config: &RtcSleepConfig, wake_sources: &[&dyn WakeSource]) {
let mut config = *config;
let mut wakeup_triggers = WakeTriggers::default();
for wake_source in wake_sources {
wake_source.apply(self, &mut wakeup_triggers, &mut config)
}
config.apply();
config.start_sleep(wakeup_triggers);
config.finish_sleep();
}
const RTC_DISABLE_ROM_LOG: u32 = 1;
/// Temporarily disable log messages of the ROM bootloader.
///
/// If you need to permanently disable the ROM bootloader messages, you'll
/// need to set the corresponding eFuse.
#[cfg(any(esp32s3, esp32h2))]
pub fn disable_rom_message_printing(&self) {
// Corresponding documentation:
// ESP32-S3: TRM v1.5 chapter 8.3
// ESP32-H2: TRM v0.5 chapter 8.2.3
let rtc_cntl = unsafe { lp_aon() };
rtc_cntl
.store4()
.modify(|r, w| unsafe { w.bits(r.bits() | Self::RTC_DISABLE_ROM_LOG) });
}
}
impl crate::private::Sealed for Rtc<'_> {}
impl InterruptConfigurable for Rtc<'_> {
fn set_interrupt_handler(&mut self, handler: InterruptHandler) {
cfg_if::cfg_if! {
if #[cfg(any(esp32c6, esp32h2))] {
let interrupt = Interrupt::LP_WDT;
} else {
let interrupt = Interrupt::RTC_CORE;
}
}
for core in crate::Cpu::other() {
crate::interrupt::disable(core, interrupt);
}
unsafe { interrupt::bind_interrupt(interrupt, handler.handler()) };
unwrap!(interrupt::enable(interrupt, handler.priority()));
}
}
/// RTC Watchdog Timer.
pub struct RtcClock;
/// RTC Watchdog Timer driver.
impl RtcClock {
const CAL_FRACT: u32 = 19;
/// Enable or disable 8 MHz internal oscillator.
///
/// Output from 8 MHz internal oscillator is passed into a configurable
/// divider, which by default divides the input clock frequency by 256.
/// Output of the divider may be used as RTC_SLOW_CLK source.
/// Output of the divider is referred to in register descriptions and code
/// as 8md256 or simply d256. Divider values other than 256 may be
/// configured, but this facility is not currently needed, so is not
/// exposed in the code.
///
/// When 8MHz/256 divided output is not needed, the divider should be
/// disabled to reduce power consumption.
#[cfg(not(any(esp32c6, esp32h2)))]
fn enable_8m(clk_8m_en: bool, d256_en: bool) {
let rtc_cntl = unsafe { &*LPWR::PTR };
if clk_8m_en {
rtc_cntl.clk_conf().modify(|_, w| w.enb_ck8m().clear_bit());
unsafe {
rtc_cntl.timer1().modify(|_, w| w.ck8m_wait().bits(5));
}
crate::rom::ets_delay_us(50);
} else {
rtc_cntl.clk_conf().modify(|_, w| w.enb_ck8m().set_bit());
rtc_cntl
.timer1()
.modify(|_, w| unsafe { w.ck8m_wait().bits(20) });
}
if d256_en {
rtc_cntl
.clk_conf()
.modify(|_, w| w.enb_ck8m_div().clear_bit());
} else {
rtc_cntl
.clk_conf()
.modify(|_, w| w.enb_ck8m_div().set_bit());
}
}
pub(crate) fn read_xtal_freq_mhz() -> Option<u32> {
let xtal_freq_reg = unsafe { lp_aon() }.store4().read().bits();
// RTC_XTAL_FREQ is stored as two copies in lower and upper 16-bit halves
// need to mask out the RTC_DISABLE_ROM_LOG bit which is also stored in the same
// register
let xtal_freq = (xtal_freq_reg & !Rtc::RTC_DISABLE_ROM_LOG) as u16;
let xtal_freq_copy = (xtal_freq_reg >> 16) as u16;
if xtal_freq == xtal_freq_copy && xtal_freq != 0 && xtal_freq != u16::MAX {
Some(xtal_freq as u32)
} else {
None
}
}
/// Get main XTAL frequency.
/// This is the value stored in RTC register RTC_XTAL_FREQ_REG by the
/// bootloader, as passed to rtc_clk_init function.
#[cfg(not(any(esp32c6, esp32h2)))]
pub fn xtal_freq() -> XtalClock {
match Self::read_xtal_freq_mhz() {
None | Some(40) => XtalClock::_40M,
#[cfg(any(esp32c3, esp32s3))]
Some(32) => XtalClock::_32M,
#[cfg(any(esp32, esp32c2))]
Some(26) => XtalClock::_26M,
Some(other) => XtalClock::Other(other),
}
}
/// Get the RTC_SLOW_CLK source.
#[cfg(not(any(esp32c6, esp32h2)))]
pub fn slow_freq() -> RtcSlowClock {
let rtc_cntl = unsafe { &*LPWR::PTR };
let slow_freq = rtc_cntl.clk_conf().read().ana_clk_rtc_sel().bits();
match slow_freq {
0 => RtcSlowClock::RtcSlowClockRtc,
1 => RtcSlowClock::RtcSlowClock32kXtal,
2 => RtcSlowClock::RtcSlowClock8mD256,
_ => unreachable!(),
}
}
/// Select source for RTC_SLOW_CLK.
#[cfg(not(any(esp32c6, esp32h2)))]
fn set_slow_freq(slow_freq: RtcSlowClock) {
unsafe {
let rtc_cntl = &*LPWR::PTR;
rtc_cntl.clk_conf().modify(|_, w| {
w.ana_clk_rtc_sel()
.bits(slow_freq as u8)
// Why we need to connect this clock to digital?
// Or maybe this clock should be connected to digital when
// XTAL 32k clock is enabled instead?
.dig_xtal32k_en()
.bit(matches!(slow_freq, RtcSlowClock::RtcSlowClock32kXtal))
// The clk_8m_d256 will be closed when rtc_state in SLEEP,
// so if the slow_clk is 8md256, clk_8m must be force power on
.ck8m_force_pu()
.bit(matches!(slow_freq, RtcSlowClock::RtcSlowClock8mD256))
});
};
crate::rom::ets_delay_us(300u32);
}
/// Select source for RTC_FAST_CLK.
#[cfg(not(any(esp32c6, esp32h2)))]
fn set_fast_freq(fast_freq: RtcFastClock) {
unsafe {
let rtc_cntl = &*LPWR::PTR;
rtc_cntl.clk_conf().modify(|_, w| {
w.fast_clk_rtc_sel().bit(match fast_freq {
RtcFastClock::RtcFastClock8m => true,
RtcFastClock::RtcFastClockXtalD4 => false,
})
});
};
crate::rom::ets_delay_us(3u32);
}
/// Calibration of RTC_SLOW_CLK is performed using a special feature of
/// TIMG0. This feature counts the number of XTAL clock cycles within a
/// given number of RTC_SLOW_CLK cycles.
#[cfg(not(any(esp32c6, esp32h2)))]
fn calibrate_internal(cal_clk: RtcCalSel, slowclk_cycles: u32) -> u32 {
// Except for ESP32, choosing RTC_CAL_RTC_MUX results in calibration of
// the 150k RTC clock (90k on ESP32-S2) regardless of the currently selected
// SLOW_CLK. On the ESP32, it uses the currently selected SLOW_CLK.
// The following code emulates ESP32 behavior for the other chips:
#[cfg(not(esp32))]
let cal_clk = match cal_clk {
RtcCalSel::RtcCalRtcMux => match RtcClock::slow_freq() {
RtcSlowClock::RtcSlowClock32kXtal => RtcCalSel::RtcCal32kXtal,
RtcSlowClock::RtcSlowClock8mD256 => RtcCalSel::RtcCal8mD256,
_ => cal_clk,
},
RtcCalSel::RtcCalInternalOsc => RtcCalSel::RtcCalRtcMux,
_ => cal_clk,
};
let rtc_cntl = unsafe { &*LPWR::PTR };
let timg0 = unsafe { &*TIMG0::PTR };
// Enable requested clock (150k clock is always on)
let dig_32k_xtal_enabled = rtc_cntl.clk_conf().read().dig_xtal32k_en().bit_is_set();
if matches!(cal_clk, RtcCalSel::RtcCal32kXtal) && !dig_32k_xtal_enabled {
rtc_cntl
.clk_conf()
.modify(|_, w| w.dig_xtal32k_en().set_bit());
}
if matches!(cal_clk, RtcCalSel::RtcCal8mD256) {
rtc_cntl
.clk_conf()
.modify(|_, w| w.dig_clk8m_d256_en().set_bit());
}
// There may be another calibration process already running during we
// call this function, so we should wait the last process is done.
#[cfg(not(esp32))]
if timg0
.rtccalicfg()
.read()
.rtc_cali_start_cycling()
.bit_is_set()
{
// Set a small timeout threshold to accelerate the generation of timeout.
// The internal circuit will be reset when the timeout occurs and will not
// affect the next calibration.
timg0
.rtccalicfg2()
.modify(|_, w| unsafe { w.rtc_cali_timeout_thres().bits(1) });
while timg0.rtccalicfg().read().rtc_cali_rdy().bit_is_clear()
&& timg0.rtccalicfg2().read().rtc_cali_timeout().bit_is_clear()
{}
}
// Prepare calibration
timg0.rtccalicfg().modify(|_, w| unsafe {
w.rtc_cali_clk_sel()
.bits(cal_clk as u8)
.rtc_cali_start_cycling()
.clear_bit()
.rtc_cali_max()
.bits(slowclk_cycles as u16)
});
// Figure out how long to wait for calibration to finish
// Set timeout reg and expect time delay
let expected_freq = match cal_clk {
RtcCalSel::RtcCal32kXtal => {
#[cfg(not(esp32))]
timg0.rtccalicfg2().modify(|_, w| unsafe {
w.rtc_cali_timeout_thres().bits(slowclk_cycles << 12)
});
RtcSlowClock::RtcSlowClock32kXtal
}
RtcCalSel::RtcCal8mD256 => {
#[cfg(not(esp32))]
timg0.rtccalicfg2().modify(|_, w| unsafe {
w.rtc_cali_timeout_thres().bits(slowclk_cycles << 12)
});
RtcSlowClock::RtcSlowClock8mD256
}
_ => {
#[cfg(not(esp32))]
timg0.rtccalicfg2().modify(|_, w| unsafe {
w.rtc_cali_timeout_thres().bits(slowclk_cycles << 10)
});
RtcSlowClock::RtcSlowClockRtc
}
};
let us_time_estimate = HertzU32::MHz(slowclk_cycles) / expected_freq.frequency();
// Start calibration
timg0
.rtccalicfg()
.modify(|_, w| w.rtc_cali_start().clear_bit().rtc_cali_start().set_bit());
// Wait for calibration to finish up to another us_time_estimate
crate::rom::ets_delay_us(us_time_estimate);
#[cfg(esp32)]
let mut timeout_us = us_time_estimate;
let cal_val = loop {
if timg0.rtccalicfg().read().rtc_cali_rdy().bit_is_set() {
break timg0.rtccalicfg1().read().rtc_cali_value().bits();
}
#[cfg(not(esp32))]
if timg0.rtccalicfg2().read().rtc_cali_timeout().bit_is_set() {
// Timed out waiting for calibration
break 0;
}
#[cfg(esp32)]
if timeout_us > 0 {
timeout_us -= 1;
crate::rom::ets_delay_us(1);
} else {
// Timed out waiting for calibration
break 0;
}
};
timg0
.rtccalicfg()
.modify(|_, w| w.rtc_cali_start().clear_bit());
rtc_cntl
.clk_conf()
.modify(|_, w| w.dig_xtal32k_en().bit(dig_32k_xtal_enabled));
if matches!(cal_clk, RtcCalSel::RtcCal8mD256) {
rtc_cntl
.clk_conf()
.modify(|_, w| w.dig_clk8m_d256_en().clear_bit());
}
cal_val
}
/// Measure ratio between XTAL frequency and RTC slow clock frequency.
#[cfg(not(any(esp32c6, esp32h2)))]
fn calibration_ratio(cal_clk: RtcCalSel, slowclk_cycles: u32) -> u32 {
let xtal_cycles = RtcClock::calibrate_internal(cal_clk, slowclk_cycles) as u64;
let ratio = (xtal_cycles << RtcClock::CAL_FRACT) / slowclk_cycles as u64;
(ratio & (u32::MAX as u64)) as u32
}
/// Measure RTC slow clock's period, based on main XTAL frequency.
///
/// This function will time out and return 0 if the time for the given
/// number of cycles to be counted exceeds the expected time twice. This
/// may happen if 32k XTAL is being calibrated, but the oscillator has
/// not started up (due to incorrect loading capacitance, board design
/// issue, or lack of 32 XTAL on board).
#[cfg(not(any(esp32c6, esp32h2)))]
fn calibrate(cal_clk: RtcCalSel, slowclk_cycles: u32) -> u32 {
let xtal_freq = RtcClock::xtal_freq();
let xtal_cycles = RtcClock::calibrate_internal(cal_clk, slowclk_cycles) as u64;
let divider = xtal_freq.mhz() as u64 * slowclk_cycles as u64;
let period_64 = ((xtal_cycles << RtcClock::CAL_FRACT) + divider / 2u64 - 1u64) / divider;
(period_64 & u32::MAX as u64) as u32
}
/// Calculate the necessary RTC_SLOW_CLK cycles to complete 1 millisecond.
#[cfg(not(any(esp32c6, esp32h2)))]
fn cycles_to_1ms() -> u16 {
let period_13q19 = RtcClock::calibrate(
match RtcClock::slow_freq() {
RtcSlowClock::RtcSlowClockRtc => RtcCalSel::RtcCalRtcMux,
RtcSlowClock::RtcSlowClock32kXtal => RtcCalSel::RtcCal32kXtal,
#[cfg(not(any(esp32c6, esp32h2)))]
RtcSlowClock::RtcSlowClock8mD256 => RtcCalSel::RtcCal8mD256,
},
1024,
);
// 100_000_000 is used to get rid of `float` calculations
let period = (100_000_000 * period_13q19 as u64) / (1 << RtcClock::CAL_FRACT);
(100_000_000 * 1000 / period) as u16
}
/// Return estimated XTAL frequency in MHz.
#[cfg(not(any(esp32c6, esp32h2)))]
pub(crate) fn estimate_xtal_frequency() -> u32 {
// Number of 8M/256 clock cycles to use for XTAL frequency estimation.
const XTAL_FREQ_EST_CYCLES: u32 = 10;
let rtc_cntl = unsafe { &*LPWR::PTR };
let clk_8m_enabled = rtc_cntl.clk_conf().read().enb_ck8m().bit_is_clear();
let clk_8md256_enabled = rtc_cntl.clk_conf().read().enb_ck8m_div().bit_is_clear();
if !clk_8md256_enabled {
RtcClock::enable_8m(true, true);
}
let ratio = RtcClock::calibration_ratio(RtcCalSel::RtcCal8mD256, XTAL_FREQ_EST_CYCLES);
let freq_mhz =
((ratio as u64 * RtcFastClock::RtcFastClock8m.hz() as u64 / 1_000_000u64 / 256u64)
>> RtcClock::CAL_FRACT) as u32;
RtcClock::enable_8m(clk_8m_enabled, clk_8md256_enabled);
freq_mhz
}
}
/// Behavior of the RWDT stage if it times out.
#[allow(unused)]
#[derive(Debug, Clone, Copy)]
pub enum RwdtStageAction {
/// No effect on the system.
Off = 0,
/// Trigger an interrupt.
Interrupt = 1,
/// Reset the CPU core.
ResetCpu = 2,
/// Reset the main system.
/// The power management unit and RTC peripherals will not be reset.
ResetCore = 3,
/// Reset the main system, power management unit and RTC peripherals.
ResetSystem = 4,
}
/// RWDT stages.
///
/// Timer stages allow for a timer to have a series of different timeout values
/// and corresponding expiry action.
#[derive(Debug, Clone, Copy)]
pub enum RwdtStage {
/// RWDT stage 0.
Stage0,
/// RWDT stage 1.
Stage1,
/// RWDT stage 2.
Stage2,
/// RWDT stage 3.
Stage3,
}
/// RTC Watchdog Timer.
pub struct Rwdt;
impl Default for Rwdt {
fn default() -> Self {
Self::new()
}
}
/// RTC Watchdog Timer driver.
impl Rwdt {
/// Create a new RTC watchdog timer instance
pub fn new() -> Self {
Self
}
/// Enable the watchdog timer instance.
/// Watchdog starts with default settings (`stage 0` resets the system, the
/// others are deactivated)
pub fn enable(&mut self) {
self.set_enabled(true);
}
/// Disable the watchdog timer instance.
pub fn disable(&mut self) {
self.set_enabled(false);
}
/// Listen for interrupts on stage 0.
pub fn listen(&mut self) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
// Configure STAGE0 to trigger an interrupt upon expiration
rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg0().bits(RwdtStageAction::Interrupt as u8) });
rtc_cntl.int_ena().modify(|_, w| w.wdt().set_bit());
self.set_write_protection(true);
}
/// Stop listening for interrupts on stage 0.
pub fn unlisten(&mut self) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
// Configure STAGE0 to reset the main system and the RTC upon expiration.
rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg0().bits(RwdtStageAction::ResetSystem as u8) });
rtc_cntl.int_ena().modify(|_, w| w.wdt().clear_bit());
self.set_write_protection(true);
}
/// Clear interrupt.
pub fn clear_interrupt(&mut self) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
rtc_cntl.int_clr().write(|w| w.wdt().clear_bit_by_one());
self.set_write_protection(true);
}
/// Check if the interrupt is set.
pub fn is_interrupt_set(&self) -> bool {
let rtc_cntl = unsafe { lp_wdt() };
rtc_cntl.int_st().read().wdt().bit_is_set()
}
/// Feed the watchdog timer.
pub fn feed(&mut self) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
rtc_cntl.wdtfeed().write(|w| w.wdt_feed().set_bit());
self.set_write_protection(true);
}
fn set_write_protection(&mut self, enable: bool) {
let rtc_cntl = unsafe { lp_wdt() };
let wkey = if enable { 0u32 } else { 0x50D8_3AA1 };
rtc_cntl.wdtwprotect().write(|w| unsafe { w.bits(wkey) });
}
fn set_enabled(&mut self, enable: bool) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
if !enable {
rtc_cntl.wdtconfig0().modify(|_, w| unsafe { w.bits(0) });
} else {
rtc_cntl
.wdtconfig0()
.write(|w| w.wdt_flashboot_mod_en().bit(false));
rtc_cntl
.wdtconfig0()
.modify(|_, w| w.wdt_en().bit(enable).wdt_pause_in_slp().bit(enable));
// Apply default settings for WDT
unsafe {
rtc_cntl.wdtconfig0().modify(|_, w| {
w.wdt_stg0()
.bits(RwdtStageAction::ResetSystem as u8)
.wdt_cpu_reset_length()
.bits(7)
.wdt_sys_reset_length()
.bits(7)
.wdt_stg1()
.bits(RwdtStageAction::Off as u8)
.wdt_stg2()
.bits(RwdtStageAction::Off as u8)
.wdt_stg3()
.bits(RwdtStageAction::Off as u8)
.wdt_en()
.set_bit()
});
}
}
self.set_write_protection(true);
}
/// Configure timeout value in ms for the selected stage.
pub fn set_timeout(&mut self, stage: RwdtStage, timeout: MicrosDurationU64) {
let rtc_cntl = unsafe { lp_wdt() };
let timeout_raw = (timeout.to_millis() * (RtcClock::cycles_to_1ms() as u64)) as u32;
self.set_write_protection(false);
unsafe {
#[cfg(esp32)]
match stage {
RwdtStage::Stage0 => rtc_cntl
.wdtconfig1()
.modify(|_, w| w.wdt_stg0_hold().bits(timeout_raw)),
RwdtStage::Stage1 => rtc_cntl
.wdtconfig2()
.modify(|_, w| w.wdt_stg1_hold().bits(timeout_raw)),
RwdtStage::Stage2 => rtc_cntl
.wdtconfig3()
.modify(|_, w| w.wdt_stg2_hold().bits(timeout_raw)),
RwdtStage::Stage3 => rtc_cntl
.wdtconfig4()
.modify(|_, w| w.wdt_stg3_hold().bits(timeout_raw)),
};
#[cfg(any(esp32c6, esp32h2))]
match stage {
RwdtStage::Stage0 => rtc_cntl.config1().modify(|_, w| {
w.wdt_stg0_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage1 => rtc_cntl.config2().modify(|_, w| {
w.wdt_stg1_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage2 => rtc_cntl.config3().modify(|_, w| {
w.wdt_stg2_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage3 => rtc_cntl.config4().modify(|_, w| {
w.wdt_stg3_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
};
#[cfg(not(any(esp32, esp32c6, esp32h2)))]
match stage {
RwdtStage::Stage0 => rtc_cntl.wdtconfig1().modify(|_, w| {
w.wdt_stg0_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage1 => rtc_cntl.wdtconfig2().modify(|_, w| {
w.wdt_stg1_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage2 => rtc_cntl.wdtconfig3().modify(|_, w| {
w.wdt_stg2_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
RwdtStage::Stage3 => rtc_cntl.wdtconfig4().modify(|_, w| {
w.wdt_stg3_hold()
.bits(timeout_raw >> (1 + Efuse::rwdt_multiplier()))
}),
};
}
self.set_write_protection(true);
}
/// Set the action for a specific stage.
pub fn set_stage_action(&mut self, stage: RwdtStage, action: RwdtStageAction) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
match stage {
RwdtStage::Stage0 => rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg0().bits(action as u8) }),
RwdtStage::Stage1 => rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg1().bits(action as u8) }),
RwdtStage::Stage2 => rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg2().bits(action as u8) }),
RwdtStage::Stage3 => rtc_cntl
.wdtconfig0()
.modify(|_, w| unsafe { w.wdt_stg3().bits(action as u8) }),
};
self.set_write_protection(true);
}
}
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
/// Super Watchdog
pub struct Swd;
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
/// Super Watchdog driver
impl Swd {
/// Create a new super watchdog timer instance
pub fn new() -> Self {
Self
}
/// Enable the watchdog timer instance
pub fn enable(&mut self) {
self.set_enabled(true);
}
/// Disable the watchdog timer instance
pub fn disable(&mut self) {
self.set_enabled(false);
}
/// Enable/disable write protection for WDT registers
fn set_write_protection(&mut self, enable: bool) {
let rtc_cntl = unsafe { lp_wdt() };
#[cfg(not(any(esp32c6, esp32h2)))]
let wkey = if enable { 0u32 } else { 0x8F1D_312A };
#[cfg(any(esp32c6, esp32h2))]
let wkey = if enable { 0u32 } else { 0x50D8_3AA1 };
rtc_cntl
.swd_wprotect()
.write(|w| unsafe { w.swd_wkey().bits(wkey) });
}
fn set_enabled(&mut self, enable: bool) {
let rtc_cntl = unsafe { lp_wdt() };
self.set_write_protection(false);
rtc_cntl
.swd_conf()
.write(|w| w.swd_auto_feed_en().bit(!enable));
self.set_write_protection(true);
}
}
#[cfg(any(esp32c2, esp32c3, esp32c6, esp32h2, esp32s3))]
impl Default for Swd {
fn default() -> Self {
Self::new()
}
}
/// Return reset reason.
pub fn reset_reason(cpu: Cpu) -> Option<SocResetReason> {
let reason = crate::rom::rtc_get_reset_reason(cpu as u32);
SocResetReason::from_repr(reason as usize)
}
/// Return wakeup reason.
pub fn wakeup_cause() -> SleepSource {
if reset_reason(Cpu::ProCpu) != Some(SocResetReason::CoreDeepSleep) {
return SleepSource::Undefined;
}
#[cfg(any(esp32c6, esp32h2))]
let wakeup_cause = WakeupReason::from_bits_retain(unsafe {
(*crate::peripherals::PMU::PTR)
.slp_wakeup_status0()
.read()
.wakeup_cause()
.bits()
});
#[cfg(not(any(esp32, esp32c6, esp32h2)))]
let wakeup_cause = WakeupReason::from_bits_retain(unsafe {
(*LPWR::PTR).slp_wakeup_cause().read().wakeup_cause().bits()
});
#[cfg(esp32)]
let wakeup_cause = WakeupReason::from_bits_retain(unsafe {
(*LPWR::PTR).wakeup_state().read().wakeup_cause().bits() as u32
});
if wakeup_cause.contains(WakeupReason::TimerTrigEn) {
return SleepSource::Timer;
}
if wakeup_cause.contains(WakeupReason::GpioTrigEn) {
return SleepSource::Gpio;
}
if wakeup_cause.intersects(WakeupReason::Uart0TrigEn | WakeupReason::Uart1TrigEn) {
return SleepSource::Uart;
}
#[cfg(pm_support_ext0_wakeup)]
if wakeup_cause.contains(WakeupReason::ExtEvent0Trig) {
return SleepSource::Ext0;
}
#[cfg(pm_support_ext1_wakeup)]
if wakeup_cause.contains(WakeupReason::ExtEvent1Trig) {
return SleepSource::Ext1;
}
#[cfg(pm_support_touch_sensor_wakeup)]
if wakeup_cause.contains(WakeupReason::TouchTrigEn) {
return SleepSource::TouchPad;
}
#[cfg(ulp_supported)]
if wakeup_cause.contains(WakeupReason::UlpTrigEn) {
return SleepSource::Ulp;
}
#[cfg(pm_support_wifi_wakeup)]
if wakeup_cause.contains(WakeupReason::WifiTrigEn) {
return SleepSource::Wifi;
}
#[cfg(pm_support_bt_wakeup)]
if wakeup_cause.contains(WakeupReason::BtTrigEn) {
return SleepSource::BT;
}
#[cfg(riscv_coproc_supported)]
if wakeup_cause.contains(WakeupReason::CocpuTrigEn) {
return SleepSource::Ulp;
} else if wakeup_cause.contains(WakeupReason::CocpuTrapTrigEn) {
return SleepSource::CocpuTrapTrig;
}
SleepSource::Undefined
}
// libphy.a can pull this in on some chips, we provide it here in the hal
// so that either ieee or esp-wifi gets it for free without duplicating in both
#[no_mangle]
extern "C" fn rtc_clk_xtal_freq_get() -> i32 {
let xtal = RtcClock::xtal_freq();
xtal.mhz() as i32
}