esp_hal/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#![cfg_attr(
    all(docsrs, not(not_really_docsrs)),
    doc = "<div style='padding:30px;background:#810;color:#fff;text-align:center;'><p>You might want to <a href='https://docs.esp-rs.org/esp-hal/'>browse the <code>esp-hal</code> documentation on the esp-rs website</a> instead.</p><p>The documentation here on <a href='https://docs.rs'>docs.rs</a> is built for a single chip only (ESP32-C6, in particular), while on the esp-rs website you can select your exact chip from the list of supported devices. Available peripherals and their APIs change depending on the chip.</p></div>\n\n<br/>\n\n"
)]
//! # Bare-metal (`no_std`) HAL for all Espressif ESP32 devices.
//!
//! ## Overview
//! The HAL implements both blocking _and_ async
//! APIs for many peripherals. Where applicable, driver implement
//! the [embedded-hal] and [embedded-hal-async] traits.
//!
//! This documentation is built for the
#![cfg_attr(esp32, doc = "**ESP32**")]
#![cfg_attr(esp32s2, doc = "**ESP32-S2**")]
#![cfg_attr(esp32s3, doc = "**ESP32-S3**")]
#![cfg_attr(esp32c2, doc = "**ESP32-C2**")]
#![cfg_attr(esp32c3, doc = "**ESP32-C3**")]
#![cfg_attr(esp32c6, doc = "**ESP32-C6**")]
#![cfg_attr(esp32h2, doc = "**ESP32-H2**")]
//! . Please ensure you are reading the correct [documentation] for your target
//! device.
//!
//! ## Choosing a Device
//!
//! Depending on your target device, you need to enable the chip feature
//! for that device. You may also need to do this on ancillary esp-hal crates.
//!
//! ## Examples
//!
//! We have a plethora of [examples] in the esp-hal repository. We use
//! an [xtask] to automate the building, running, and testing of code and
//! examples within esp-hal.
//!
//! Invoke the following command in the root of the esp-hal repository to get
//! started:
//!
//! ```bash
//! cargo xtask help
//! ```
//!
//! ## Creating a Project
//!
//! We have a [book] that explains the full esp-rs ecosystem
//! and how to get started, it's advisable to give that a read
//! before proceeding. We also have a [training] that covers some common
//! scenarios with examples.
//!
//! We have developed a project generation tool, [esp-generate], which we
//! recommend when starting new projects. It can be installed and run, e.g.
//! for the ESP32-C6, as follows:
//!
//! ```bash
//! cargo install esp-generate
//! esp-generate --chip=esp32c6 your-project
//! ```
//!
//! ## Blinky
//!
//! Some minimal code to blink an LED looks like this:
//!
//! ```rust, no_run
//! #![no_std]
//! #![no_main]
//!
//! // You'll need a panic handler e.g. `use esp_backtrace as _;`
//! # #[panic_handler]
//! # fn panic(_ : &core::panic::PanicInfo) -> ! {
//! #     loop {}
//! # }
//! use esp_hal::{
//!     clock::CpuClock,
//!     delay::Delay,
//!     gpio::{Io, Level, Output},
//!     main,
//! };
//!
//! #[main]
//! fn main() -> ! {
//!     let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
//!     let peripherals = esp_hal::init(config);
//!
//!     // Set GPIO0 as an output, and set its state high initially.
//!     let mut led = Output::new(peripherals.GPIO0, Level::High);
//!
//!     let delay = Delay::new();
//!
//!     loop {
//!         led.toggle();
//!         delay.delay_millis(1000);
//!     }
//! }
//! ```
//!
//! ## Additional configuration
//!
//! We've exposed some configuration options that don't fit into cargo
//! features. These can be set via environment variables, or via cargo's `[env]`
//! section inside `.cargo/config.toml`. Below is a table of tunable parameters
//! for this crate:
#![doc = ""]
#![doc = include_str!(concat!(env!("OUT_DIR"), "/esp_hal_config_table.md"))]
#![doc = ""]
//! It's important to note that due to a [bug in cargo](https://github.com/rust-lang/cargo/issues/10358),
//! any modifications to the environment, local or otherwise will only get
//! picked up on a full clean build of the project.
//!
//! ## `Peripheral` Pattern
//!
//! Drivers take pins and peripherals as [peripheral::Peripheral] in most
//! circumstances. This means you can pass the pin/peripheral or a mutable
//! reference to the pin/peripheral.
//!
//! The latter can be used to regain access to the pin when the driver gets
//! dropped. Then it's possible to reuse the pin/peripheral for a different
//! purpose.
//!
//! ## Don't use `core::mem::forget`
//!
//! You should never use `core::mem::forget` on any type defined in the HAL.
//! Some types heavily rely on their `Drop` implementation to not leave the
//! hardware in undefined state and causing UB.
//!
//! You might want to consider using [`#[deny(clippy::mem_forget)`](https://rust-lang.github.io/rust-clippy/v0.0.212/index.html#mem_forget) in your project.
//!
//! [documentation]: https://docs.esp-rs.org/esp-hal
//! [examples]: https://github.com/esp-rs/esp-hal/tree/main/examples
//! [embedded-hal]: https://docs.rs/embedded-hal/latest/embedded_hal/
//! [embedded-hal-async]: https://docs.rs/embedded-hal-async/latest/embedded_hal_async/
//! [xtask]: https://github.com/matklad/cargo-xtask
//! [esp-generate]: https://github.com/esp-rs/esp-generate
//! [book]: https://docs.esp-rs.org/book/
//! [training]: https://docs.esp-rs.org/no_std-training/
//!
//! ## Feature Flags
#![doc = document_features::document_features!(feature_label = r#"<span class="stab portability"><code>{feature}</code></span>"#)]
#![doc(html_logo_url = "https://avatars.githubusercontent.com/u/46717278")]
#![allow(asm_sub_register, async_fn_in_trait, stable_features)]
#![cfg_attr(xtensa, feature(asm_experimental_arch))]
#![deny(missing_docs, rust_2018_idioms, rustdoc::all)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![no_std]

// MUST be the first module
mod fmt;

#[cfg(riscv)]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[cfg_attr(not(feature = "unstable"), doc(hidden))]
pub use esp_riscv_rt::{self, riscv};
#[cfg(xtensa)]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[cfg_attr(not(feature = "unstable"), doc(hidden))]
pub use xtensa_lx_rt::{self, xtensa_lx};

// TODO what should we reexport stably?
#[cfg(any(esp32, esp32s3))]
pub use self::soc::cpu_control;
#[cfg(efuse)]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use self::soc::efuse;
#[cfg(lp_core)]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use self::soc::lp_core;
pub use self::soc::peripherals;
#[instability::unstable]
#[cfg(any(feature = "quad-psram", feature = "octal-psram"))]
pub use self::soc::psram;
#[cfg(ulp_riscv_core)]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use self::soc::ulp_core;

#[cfg(any(dport, hp_sys, pcr, system))]
pub mod clock;
#[cfg(gpio)]
pub mod gpio;
#[cfg(any(i2c0, i2c1))]
pub mod i2c;
pub mod peripheral;
#[cfg(any(hmac, sha))]
mod reg_access;
#[cfg(any(spi0, spi1, spi2, spi3))]
pub mod spi;
#[cfg(any(uart0, uart1, uart2))]
pub mod uart;

mod macros;

pub use procmacros::blocking_main as main;
#[cfg(any(lp_core, ulp_riscv_core))]
#[cfg(feature = "unstable")]
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
pub use procmacros::load_lp_code;
#[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
#[instability::unstable]
#[cfg_attr(not(feature = "unstable"), allow(unused))]
pub use procmacros::{handler, ram};

// can't use instability on inline module definitions, see https://github.com/rust-lang/rust/issues/54727
#[doc(hidden)]
macro_rules! unstable_module {
    ($(
        $(#[$meta:meta])*
        pub mod $module:ident;
    )*) => {
        $(
            $(#[$meta])*
            #[cfg(feature = "unstable")]
            #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
            pub mod $module;

            $(#[$meta])*
            #[cfg(not(feature = "unstable"))]
            #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
            #[allow(unused)]
            pub(crate) mod $module;
        )*
    };
}

pub(crate) use unstable_module;

unstable_module! {
    #[cfg(aes)]
    pub mod aes;
    #[cfg(any(adc, dac))]
    pub mod analog;
    pub mod asynch;
    #[cfg(assist_debug)]
    pub mod assist_debug;
    pub mod config;
    pub mod debugger;
    #[cfg(any(xtensa, all(riscv, systimer)))]
    pub mod delay;
    #[cfg(any(gdma, pdma))]
    pub mod dma;
    #[cfg(ecc)]
    pub mod ecc;
    #[cfg(soc_etm)]
    pub mod etm;
    #[cfg(hmac)]
    pub mod hmac;
    #[cfg(any(i2s0, i2s1))]
    pub mod i2s;
    #[cfg(any(dport, interrupt_core0, interrupt_core1))]
    pub mod interrupt;
    #[cfg(lcd_cam)]
    pub mod lcd_cam;
    #[cfg(ledc)]
    pub mod ledc;
    #[cfg(any(mcpwm0, mcpwm1))]
    pub mod mcpwm;
    #[cfg(usb0)]
    pub mod otg_fs;
    #[cfg(parl_io)]
    pub mod parl_io;
    #[cfg(pcnt)]
    pub mod pcnt;
    #[cfg(any(lp_clkrst, rtc_cntl))]
    pub mod reset;
    #[cfg(rmt)]
    pub mod rmt;
    #[cfg(rng)]
    pub mod rng;
    pub mod rom;
    #[cfg(rsa)]
    pub mod rsa;
    #[cfg(any(lp_clkrst, rtc_cntl))]
    pub mod rtc_cntl;
    #[cfg(sha)]
    pub mod sha;
    #[doc(hidden)]
    pub mod sync;
    #[cfg(any(dport, hp_sys, pcr, system))]
    pub mod system;
    pub mod time;
    #[cfg(any(systimer, timg0, timg1))]
    pub mod timer;
    #[cfg(touch)]
    pub mod touch;
    #[cfg(trace0)]
    pub mod trace;
    #[cfg(tsens)]
    pub mod tsens;
    #[cfg(any(twai0, twai1))]
    pub mod twai;
    #[cfg(usb_device)]
    pub mod usb_serial_jtag;
}

/// State of the CPU saved when entering exception or interrupt
pub mod trapframe {
    #[cfg(riscv)]
    pub use esp_riscv_rt::TrapFrame;
    #[cfg(xtensa)]
    pub use xtensa_lx_rt::exception::Context as TrapFrame;
}

// The `soc` module contains chip-specific implementation details and should not
// be directly exposed.
mod soc;

#[cfg(is_debug_build)]
esp_build::warning! {"
WARNING: use --release
  We *strongly* recommend using release profile when building esp-hal.
  The dev profile can potentially be one or more orders of magnitude
  slower than release, and may cause issues with timing-senstive
  peripherals and/or devices.
"}

/// A marker trait for initializing drivers in a specific mode.
pub trait DriverMode: crate::private::Sealed {}

/// Driver initialized in blocking mode.
#[derive(Debug)]
pub struct Blocking;

/// Driver initialized in async mode.
#[derive(Debug)]
pub struct Async;

impl crate::DriverMode for Blocking {}
impl crate::DriverMode for Async {}
impl crate::private::Sealed for Blocking {}
impl crate::private::Sealed for Async {}

pub(crate) mod private {
    pub trait Sealed {}

    #[non_exhaustive]
    #[doc(hidden)]
    /// Magical incantation to gain access to internal APIs.
    pub struct Internal;

    impl Internal {
        /// Obtain magical powers to access internal APIs.
        ///
        /// # Safety
        ///
        /// By calling this function, you accept that you are using an internal
        /// API that is not guaranteed to be documented, stable, working
        /// and may change at any time.
        ///
        /// You declare that you have tried to look for other solutions, that
        /// you have opened a feature request or an issue to discuss the
        /// need for this function.
        pub unsafe fn conjure() -> Self {
            Self
        }
    }
}

#[cfg(feature = "unstable")]
#[doc(hidden)]
pub use private::Internal;

/// Marker trait for types that can be safely used in `#[ram(persistent)]`.
///
/// # Safety
///
/// - The type must be inhabited
/// - The type must be valid for any bit pattern of its backing memory in case a
///   reset occurs during a write or a reset interrupts the zero initialization
///   on first boot.
/// - Structs must contain only `Persistable` fields and padding
#[instability::unstable]
pub unsafe trait Persistable: Sized {}

macro_rules! impl_persistable {
    ($($t:ty),+) => {$(
        unsafe impl Persistable for $t {}
    )+};
    (atomic $($t:ident),+) => {$(
        unsafe impl Persistable for portable_atomic::$t {}
    )+};
}

impl_persistable!(u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64);
impl_persistable!(atomic AtomicU8, AtomicI8, AtomicU16, AtomicI16, AtomicU32, AtomicI32, AtomicUsize, AtomicIsize);

unsafe impl<T: Persistable, const N: usize> Persistable for [T; N] {}

#[doc(hidden)]
pub mod __macro_implementation {
    //! Private implementation details of esp-hal-procmacros.

    #[instability::unstable]
    pub const fn assert_is_zeroable<T: bytemuck::Zeroable>() {}

    #[instability::unstable]
    pub const fn assert_is_persistable<T: super::Persistable>() {}

    #[cfg(riscv)]
    pub use esp_riscv_rt::entry as __entry;
    #[cfg(xtensa)]
    pub use xtensa_lx_rt::entry as __entry;
}

/// Available CPU cores
///
/// The actual number of available cores depends on the target.
#[derive(Debug, Copy, Clone, PartialEq, Eq, strum::FromRepr)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(C)]
pub enum Cpu {
    /// The first core
    ProCpu = 0,
    /// The second core
    #[cfg(multi_core)]
    AppCpu = 1,
}

impl Cpu {
    /// The number of available cores.
    pub const COUNT: usize = 1 + cfg!(multi_core) as usize;

    /// Returns the core the application is currently executing on
    #[inline(always)]
    pub fn current() -> Self {
        // This works for both RISCV and Xtensa because both
        // get_raw_core functions return zero, _or_ something
        // greater than zero; 1 in the case of RISCV and 0x2000
        // in the case of Xtensa.
        match raw_core() {
            0 => Cpu::ProCpu,
            #[cfg(all(multi_core, riscv))]
            1 => Cpu::AppCpu,
            #[cfg(all(multi_core, xtensa))]
            0x2000 => Cpu::AppCpu,
            _ => unreachable!(),
        }
    }

    /// Returns an iterator over the "other" cores.
    #[inline(always)]
    pub(crate) fn other() -> impl Iterator<Item = Self> {
        cfg_if::cfg_if! {
            if #[cfg(multi_core)] {
                match Self::current() {
                    Cpu::ProCpu => [Cpu::AppCpu].into_iter(),
                    Cpu::AppCpu => [Cpu::ProCpu].into_iter(),
                }
            } else {
                [].into_iter()
            }
        }
    }

    /// Returns an iterator over all cores.
    #[inline(always)]
    pub(crate) fn all() -> impl Iterator<Item = Self> {
        cfg_if::cfg_if! {
            if #[cfg(multi_core)] {
                [Cpu::ProCpu, Cpu::AppCpu].into_iter()
            } else {
                [Cpu::ProCpu].into_iter()
            }
        }
    }
}

/// Returns the raw value of the mhartid register.
///
/// Safety: This method should never return UNUSED_THREAD_ID_VALUE
#[cfg(riscv)]
#[inline(always)]
fn raw_core() -> usize {
    #[cfg(multi_core)]
    {
        riscv::register::mhartid::read()
    }

    #[cfg(not(multi_core))]
    0
}

/// Returns the result of reading the PRID register logically ANDed with 0x2000,
/// the 13th bit in the register. Espressif Xtensa chips use this bit to
/// determine the core id.
///
/// Returns either 0 or 0x2000
///
/// Safety: This method should never return UNUSED_THREAD_ID_VALUE
#[cfg(xtensa)]
#[inline(always)]
fn raw_core() -> usize {
    (xtensa_lx::get_processor_id() & 0x2000) as usize
}

#[cfg(riscv)]
#[export_name = "hal_main"]
fn hal_main(a0: usize, a1: usize, a2: usize) -> ! {
    extern "Rust" {
        // This symbol will be provided by the user via `#[entry]`
        fn main(a0: usize, a1: usize, a2: usize) -> !;
    }

    extern "C" {
        static mut __stack_chk_guard: u32;
    }

    unsafe {
        let stack_chk_guard = core::ptr::addr_of_mut!(__stack_chk_guard);
        // we _should_ use a random value but we don't have a good source for random
        // numbers here
        stack_chk_guard.write_volatile(0xdeadbabe);

        main(a0, a1, a2);
    }
}

#[export_name = "__stack_chk_fail"]
unsafe extern "C" fn stack_chk_fail() {
    panic!("Stack corruption detected");
}

#[cfg(feature = "unstable")]
use crate::config::{WatchdogConfig, WatchdogStatus};
use crate::{
    clock::{Clocks, CpuClock},
    peripherals::Peripherals,
};

/// System configuration.
///
/// This `struct` is marked with `#[non_exhaustive]` and can't be instantiated
/// directly. This is done to prevent breaking changes when new fields are added
/// to the `struct`. Instead, use the [`Config::default()`] method to create a
/// new instance.
///
/// For usage examples, see the [config module documentation](crate::config).
#[non_exhaustive]
#[derive(Default, procmacros::BuilderLite)]
pub struct Config {
    /// The CPU clock configuration.
    pub cpu_clock: CpuClock,

    /// Enable watchdog timer(s).
    #[cfg(any(doc, feature = "unstable"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
    pub watchdog: WatchdogConfig,

    /// PSRAM configuration.
    #[cfg(any(doc, feature = "unstable"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "unstable")))]
    #[cfg(any(feature = "quad-psram", feature = "octal-psram"))]
    pub psram: psram::PsramConfig,
}

/// Initialize the system.
///
/// This function sets up the CPU clock and watchdog, then, returns the
/// peripherals and clocks.
pub fn init(config: Config) -> Peripherals {
    system::disable_peripherals();

    let mut peripherals = Peripherals::take();

    // RTC domain must be enabled before we try to disable
    let mut rtc = crate::rtc_cntl::Rtc::new(&mut peripherals.LPWR);

    // Handle watchdog configuration with defaults
    cfg_if::cfg_if! {
        if #[cfg(feature = "unstable")]
        {
            #[cfg(not(any(esp32, esp32s2)))]
            if config.watchdog.swd {
                rtc.swd.enable();
            } else {
                rtc.swd.disable();
            }

            match config.watchdog.rwdt {
                WatchdogStatus::Enabled(duration) => {
                    rtc.rwdt.enable();
                    rtc.rwdt
                        .set_timeout(crate::rtc_cntl::RwdtStage::Stage0, duration);
                }
                WatchdogStatus::Disabled => {
                    rtc.rwdt.disable();
                }
            }

            match config.watchdog.timg0 {
                WatchdogStatus::Enabled(duration) => {
                    let mut timg0_wd = crate::timer::timg::Wdt::<self::peripherals::TIMG0>::new();
                    timg0_wd.enable();
                    timg0_wd.set_timeout(crate::timer::timg::MwdtStage::Stage0, duration);
                }
                WatchdogStatus::Disabled => {
                    crate::timer::timg::Wdt::<self::peripherals::TIMG0>::new().disable();
                }
            }

            #[cfg(timg1)]
            match config.watchdog.timg1 {
                WatchdogStatus::Enabled(duration) => {
                    let mut timg1_wd = crate::timer::timg::Wdt::<self::peripherals::TIMG1>::new();
                    timg1_wd.enable();
                    timg1_wd.set_timeout(crate::timer::timg::MwdtStage::Stage0, duration);
                }
                WatchdogStatus::Disabled => {
                    crate::timer::timg::Wdt::<self::peripherals::TIMG1>::new().disable();
                }
            }
        }
        else
        {
            #[cfg(not(any(esp32, esp32s2)))]
            rtc.swd.disable();

            rtc.rwdt.disable();

            crate::timer::timg::Wdt::<self::peripherals::TIMG0>::new().disable();

            #[cfg(timg1)]
            crate::timer::timg::Wdt::<self::peripherals::TIMG1>::new().disable();
        }
    }

    Clocks::init(config.cpu_clock);

    #[cfg(esp32)]
    crate::time::time_init();

    crate::gpio::bind_default_interrupt_handler();

    #[cfg(any(feature = "quad-psram", feature = "octal-psram"))]
    crate::psram::init_psram(config.psram);

    peripherals
}