Trait futures_util::stream::StreamExt

source ·
pub trait StreamExt: Stream {
Show 34 methods // Provided methods fn next(&mut self) -> Next<'_, Self> where Self: Unpin { ... } fn into_future(self) -> StreamFuture<Self> where Self: Sized + Unpin { ... } fn map<T, F>(self, f: F) -> Map<Self, F> where F: FnMut(Self::Item) -> T, Self: Sized { ... } fn enumerate(self) -> Enumerate<Self> where Self: Sized { ... } fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { ... } fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = Option<T>>, Self: Sized { ... } fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future, Self: Sized { ... } fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C> where Self: Sized { ... } fn unzip<A, B, FromA, FromB>(self) -> Unzip<Self, FromA, FromB> where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Stream<Item = (A, B)> { ... } fn concat(self) -> Concat<Self> where Self: Sized, Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> + IntoIterator + Default { ... } fn count(self) -> Count<Self> where Self: Sized { ... } fn cycle(self) -> Cycle<Self> where Self: Sized + Clone { ... } fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F> where F: FnMut(T, Self::Item) -> Fut, Fut: Future<Output = T>, Self: Sized { ... } fn any<Fut, F>(self, f: F) -> Any<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { ... } fn all<Fut, F>(self, f: F) -> All<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { ... } fn flatten(self) -> Flatten<Self> where Self::Item: Stream, Self: Sized { ... } fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> where F: FnMut(Self::Item) -> U, U: Stream, Self: Sized { ... } fn scan<S, B, Fut, F>(self, initial_state: S, f: F) -> Scan<Self, S, Fut, F> where F: FnMut(&mut S, Self::Item) -> Fut, Fut: Future<Output = Option<B>>, Self: Sized { ... } fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { ... } fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F> where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized { ... } fn take_until<Fut>(self, fut: Fut) -> TakeUntil<Self, Fut> where Fut: Future, Self: Sized { ... } fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F> where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized { ... } fn take(self, n: usize) -> Take<Self> where Self: Sized { ... } fn skip(self, n: usize) -> Skip<Self> where Self: Sized { ... } fn fuse(self) -> Fuse<Self> where Self: Sized { ... } fn by_ref(&mut self) -> &mut Self { ... } fn zip<St>(self, other: St) -> Zip<Self, St> where St: Stream, Self: Sized { ... } fn chain<St>(self, other: St) -> Chain<Self, St> where St: Stream<Item = Self::Item>, Self: Sized { ... } fn peekable(self) -> Peekable<Self> where Self: Sized { ... } fn inspect<F>(self, f: F) -> Inspect<Self, F> where F: FnMut(&Self::Item), Self: Sized { ... } fn left_stream<B>(self) -> Either<Self, B> where B: Stream<Item = Self::Item>, Self: Sized { ... } fn right_stream<B>(self) -> Either<B, Self> where B: Stream<Item = Self::Item>, Self: Sized { ... } fn poll_next_unpin( &mut self, cx: &mut Context<'_>, ) -> Poll<Option<Self::Item>> where Self: Unpin { ... } fn select_next_some(&mut self) -> SelectNextSome<'_, Self> where Self: Unpin + FusedStream { ... }
}
Expand description

An extension trait for Streams that provides a variety of convenient combinator functions.

Provided Methods§

source

fn next(&mut self) -> Next<'_, Self>
where Self: Unpin,

Creates a future that resolves to the next item in the stream.

Note that because next doesn’t take ownership over the stream, the Stream type must be [Unpin]. If you want to use next with a !Unpin stream, you’ll first have to pin the stream. This can be done by boxing the stream using [Box::pin] or pinning it to the stack using the pin_mut! macro from the pin_utils crate.

§Examples
use futures::stream::{self, StreamExt};

let mut stream = stream::iter(1..=3);

assert_eq!(stream.next().await, Some(1));
assert_eq!(stream.next().await, Some(2));
assert_eq!(stream.next().await, Some(3));
assert_eq!(stream.next().await, None);
source

fn into_future(self) -> StreamFuture<Self>
where Self: Sized + Unpin,

Converts this stream into a future of (next_item, tail_of_stream). If the stream terminates, then the next item is [None].

The returned future can be used to compose streams and futures together by placing everything into the “world of futures”.

Note that because into_future moves the stream, the Stream type must be [Unpin]. If you want to use into_future with a !Unpin stream, you’ll first have to pin the stream. This can be done by boxing the stream using [Box::pin] or pinning it to the stack using the pin_mut! macro from the pin_utils crate.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=3);

let (item, stream) = stream.into_future().await;
assert_eq!(Some(1), item);

let (item, stream) = stream.into_future().await;
assert_eq!(Some(2), item);
source

fn map<T, F>(self, f: F) -> Map<Self, F>
where F: FnMut(Self::Item) -> T, Self: Sized,

Maps this stream’s items to a different type, returning a new stream of the resulting type.

The provided closure is executed over all elements of this stream as they are made available. It is executed inline with calls to poll_next.

Note that this function consumes the stream passed into it and returns a wrapped version of it, similar to the existing map methods in the standard library.

See StreamExt::then if you want to use a closure that returns a future instead of a value.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=3);
let stream = stream.map(|x| x + 3);

assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await);
source

fn enumerate(self) -> Enumerate<Self>
where Self: Sized,

Creates a stream which gives the current iteration count as well as the next value.

The stream returned yields pairs (i, val), where i is the current index of iteration and val is the value returned by the stream.

enumerate() keeps its count as a [usize]. If you want to count by a different sized integer, the zip function provides similar functionality.

§Overflow Behavior

The method does no guarding against overflows, so enumerating more than [prim@usize::max_value()] elements either produces the wrong result or panics. If debug assertions are enabled, a panic is guaranteed.

§Panics

The returned stream might panic if the to-be-returned index would overflow a [usize].

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(vec!['a', 'b', 'c']);

let mut stream = stream.enumerate();

assert_eq!(stream.next().await, Some((0, 'a')));
assert_eq!(stream.next().await, Some((1, 'b')));
assert_eq!(stream.next().await, Some((2, 'c')));
assert_eq!(stream.next().await, None);
source

fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Filters the values produced by this stream according to the provided asynchronous predicate.

As values of this stream are made available, the provided predicate f will be run against them. If the predicate returns a Future which resolves to true, then the stream will yield the value, but if the predicate returns a Future which resolves to false, then the value will be discarded and the next value will be produced.

Note that this function consumes the stream passed into it and returns a wrapped version of it, similar to the existing filter methods in the standard library.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);
let events = stream.filter(|x| future::ready(x % 2 == 0));

assert_eq!(vec![2, 4, 6, 8, 10], events.collect::<Vec<_>>().await);
source

fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = Option<T>>, Self: Sized,

Filters the values produced by this stream while simultaneously mapping them to a different type according to the provided asynchronous closure.

As values of this stream are made available, the provided function will be run on them. If the future returned by the predicate f resolves to Some(item) then the stream will yield the value item, but if it resolves to [None] then the next value will be produced.

Note that this function consumes the stream passed into it and returns a wrapped version of it, similar to the existing filter_map methods in the standard library.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);
let events = stream.filter_map(|x| async move {
    if x % 2 == 0 { Some(x + 1) } else { None }
});

assert_eq!(vec![3, 5, 7, 9, 11], events.collect::<Vec<_>>().await);
source

fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future, Self: Sized,

Computes from this stream’s items new items of a different type using an asynchronous closure.

The provided closure f will be called with an Item once a value is ready, it returns a future which will then be run to completion to produce the next value on this stream.

Note that this function consumes the stream passed into it and returns a wrapped version of it.

See StreamExt::map if you want to use a closure that returns a value instead of a future.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=3);
let stream = stream.then(|x| async move { x + 3 });

assert_eq!(vec![4, 5, 6], stream.collect::<Vec<_>>().await);
source

fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C>
where Self: Sized,

Transforms a stream into a collection, returning a future representing the result of that computation.

The returned future will be resolved when the stream terminates.

§Examples
use futures::channel::mpsc;
use futures::stream::StreamExt;
use std::thread;

let (tx, rx) = mpsc::unbounded();

thread::spawn(move || {
    for i in 1..=5 {
        tx.unbounded_send(i).unwrap();
    }
});

let output = rx.collect::<Vec<i32>>().await;
assert_eq!(output, vec![1, 2, 3, 4, 5]);
source

fn unzip<A, B, FromA, FromB>(self) -> Unzip<Self, FromA, FromB>
where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Stream<Item = (A, B)>,

Converts a stream of pairs into a future, which resolves to pair of containers.

unzip() produces a future, which resolves to two collections: one from the left elements of the pairs, and one from the right elements.

The returned future will be resolved when the stream terminates.

§Examples
use futures::channel::mpsc;
use futures::stream::StreamExt;
use std::thread;

let (tx, rx) = mpsc::unbounded();

thread::spawn(move || {
    tx.unbounded_send((1, 2)).unwrap();
    tx.unbounded_send((3, 4)).unwrap();
    tx.unbounded_send((5, 6)).unwrap();
});

let (o1, o2): (Vec<_>, Vec<_>) = rx.unzip().await;
assert_eq!(o1, vec![1, 3, 5]);
assert_eq!(o2, vec![2, 4, 6]);
source

fn concat(self) -> Concat<Self>
where Self: Sized, Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> + IntoIterator + Default,

Concatenate all items of a stream into a single extendable destination, returning a future representing the end result.

This combinator will extend the first item with the contents of all the subsequent results of the stream. If the stream is empty, the default value will be returned.

Works with all collections that implement the Extend trait.

§Examples
use futures::channel::mpsc;
use futures::stream::StreamExt;
use std::thread;

let (tx, rx) = mpsc::unbounded();

thread::spawn(move || {
    for i in (0..3).rev() {
        let n = i * 3;
        tx.unbounded_send(vec![n + 1, n + 2, n + 3]).unwrap();
    }
});

let result = rx.concat().await;

assert_eq!(result, vec![7, 8, 9, 4, 5, 6, 1, 2, 3]);
source

fn count(self) -> Count<Self>
where Self: Sized,

Drives the stream to completion, counting the number of items.

§Overflow Behavior

The method does no guarding against overflows, so counting elements of a stream with more than [usize::MAX] elements either produces the wrong result or panics. If debug assertions are enabled, a panic is guaranteed.

§Panics

This function might panic if the iterator has more than [usize::MAX] elements.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);
let count = stream.count().await;

assert_eq!(count, 10);
source

fn cycle(self) -> Cycle<Self>
where Self: Sized + Clone,

Repeats a stream endlessly.

The stream never terminates. Note that you likely want to avoid usage of collect or such on the returned stream as it will exhaust available memory as it tries to just fill up all RAM.

§Examples
use futures::stream::{self, StreamExt};
let a = [1, 2, 3];
let mut s = stream::iter(a.iter()).cycle();

assert_eq!(s.next().await, Some(&1));
assert_eq!(s.next().await, Some(&2));
assert_eq!(s.next().await, Some(&3));
assert_eq!(s.next().await, Some(&1));
assert_eq!(s.next().await, Some(&2));
assert_eq!(s.next().await, Some(&3));
assert_eq!(s.next().await, Some(&1));
source

fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F>
where F: FnMut(T, Self::Item) -> Fut, Fut: Future<Output = T>, Self: Sized,

Execute an accumulating asynchronous computation over a stream, collecting all the values into one final result.

This combinator will accumulate all values returned by this stream according to the closure provided. The initial state is also provided to this method and then is returned again by each execution of the closure. Once the entire stream has been exhausted the returned future will resolve to this value.

§Examples
use futures::stream::{self, StreamExt};

let number_stream = stream::iter(0..6);
let sum = number_stream.fold(0, |acc, x| async move { acc + x });
assert_eq!(sum.await, 15);
source

fn any<Fut, F>(self, f: F) -> Any<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Execute predicate over asynchronous stream, and return true if any element in stream satisfied a predicate.

§Examples
use futures::stream::{self, StreamExt};

let number_stream = stream::iter(0..10);
let contain_three = number_stream.any(|i| async move { i == 3 });
assert_eq!(contain_three.await, true);
source

fn all<Fut, F>(self, f: F) -> All<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Execute predicate over asynchronous stream, and return true if all element in stream satisfied a predicate.

§Examples
use futures::stream::{self, StreamExt};

let number_stream = stream::iter(0..10);
let less_then_twenty = number_stream.all(|i| async move { i < 20 });
assert_eq!(less_then_twenty.await, true);
source

fn flatten(self) -> Flatten<Self>
where Self::Item: Stream, Self: Sized,

Flattens a stream of streams into just one continuous stream.

§Examples
use futures::channel::mpsc;
use futures::stream::StreamExt;
use std::thread;

let (tx1, rx1) = mpsc::unbounded();
let (tx2, rx2) = mpsc::unbounded();
let (tx3, rx3) = mpsc::unbounded();

thread::spawn(move || {
    tx1.unbounded_send(1).unwrap();
    tx1.unbounded_send(2).unwrap();
});
thread::spawn(move || {
    tx2.unbounded_send(3).unwrap();
    tx2.unbounded_send(4).unwrap();
});
thread::spawn(move || {
    tx3.unbounded_send(rx1).unwrap();
    tx3.unbounded_send(rx2).unwrap();
});

let output = rx3.flatten().collect::<Vec<i32>>().await;
assert_eq!(output, vec![1, 2, 3, 4]);
source

fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where F: FnMut(Self::Item) -> U, U: Stream, Self: Sized,

Maps a stream like StreamExt::map but flattens nested Streams.

StreamExt::map is very useful, but if it produces a Stream instead, you would have to chain combinators like .map(f).flatten() while this combinator provides ability to write .flat_map(f) instead of chaining.

The provided closure which produces inner streams is executed over all elements of stream as last inner stream is terminated and next stream item is available.

Note that this function consumes the stream passed into it and returns a wrapped version of it, similar to the existing flat_map methods in the standard library.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=3);
let stream = stream.flat_map(|x| stream::iter(vec![x + 3; x]));

assert_eq!(vec![4, 5, 5, 6, 6, 6], stream.collect::<Vec<_>>().await);
source

fn scan<S, B, Fut, F>(self, initial_state: S, f: F) -> Scan<Self, S, Fut, F>
where F: FnMut(&mut S, Self::Item) -> Fut, Fut: Future<Output = Option<B>>, Self: Sized,

Combinator similar to StreamExt::fold that holds internal state and produces a new stream.

Accepts initial state and closure which will be applied to each element of the stream until provided closure returns None. Once None is returned, stream will be terminated.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);

let stream = stream.scan(0, |state, x| {
    *state += x;
    future::ready(if *state < 10 { Some(x) } else { None })
});

assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await);
source

fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Skip elements on this stream while the provided asynchronous predicate resolves to true.

This function, like Iterator::skip_while, will skip elements on the stream until the predicate f resolves to false. Once one element returns false, all future elements will be returned from the underlying stream.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);

let stream = stream.skip_while(|x| future::ready(*x <= 5));

assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await);
source

fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Take elements from this stream while the provided asynchronous predicate resolves to true.

This function, like Iterator::take_while, will take elements from the stream until the predicate f resolves to false. Once one element returns false, it will always return that the stream is done.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10);

let stream = stream.take_while(|x| future::ready(*x <= 5));

assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await);
source

fn take_until<Fut>(self, fut: Fut) -> TakeUntil<Self, Fut>
where Fut: Future, Self: Sized,

Take elements from this stream until the provided future resolves.

This function will take elements from the stream until the provided stopping future fut resolves. Once the fut future becomes ready, this stream combinator will always return that the stream is done.

The stopping future may return any type. Once the stream is stopped the result of the stopping future may be accessed with TakeUntil::take_result(). The stream may also be resumed with TakeUntil::take_future(). See the documentation of TakeUntil for more information.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};
use futures::task::Poll;

let stream = stream::iter(1..=10);

let mut i = 0;
let stop_fut = future::poll_fn(|_cx| {
    i += 1;
    if i <= 5 {
        Poll::Pending
    } else {
        Poll::Ready(())
    }
});

let stream = stream.take_until(stop_fut);

assert_eq!(vec![1, 2, 3, 4, 5], stream.collect::<Vec<_>>().await);
source

fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized,

Runs this stream to completion, executing the provided asynchronous closure for each element on the stream.

The closure provided will be called for each item this stream produces, yielding a future. That future will then be executed to completion before moving on to the next item.

The returned value is a Future where the Output type is (); it is executed entirely for its side effects.

To process each item in the stream and produce another stream instead of a single future, use then instead.

§Examples
use futures::future;
use futures::stream::{self, StreamExt};

let mut x = 0;

{
    let fut = stream::repeat(1).take(3).for_each(|item| {
        x += item;
        future::ready(())
    });
    fut.await;
}

assert_eq!(x, 3);
source

fn take(self, n: usize) -> Take<Self>
where Self: Sized,

Creates a new stream of at most n items of the underlying stream.

Once n items have been yielded from this stream then it will always return that the stream is done.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10).take(3);

assert_eq!(vec![1, 2, 3], stream.collect::<Vec<_>>().await);
source

fn skip(self, n: usize) -> Skip<Self>
where Self: Sized,

Creates a new stream which skips n items of the underlying stream.

Once n items have been skipped from this stream then it will always return the remaining items on this stream.

§Examples
use futures::stream::{self, StreamExt};

let stream = stream::iter(1..=10).skip(5);

assert_eq!(vec![6, 7, 8, 9, 10], stream.collect::<Vec<_>>().await);
source

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Fuse a stream such that poll_next will never again be called once it has finished. This method can be used to turn any Stream into a FusedStream.

Normally, once a stream has returned [None] from poll_next any further calls could exhibit bad behavior such as block forever, panic, never return, etc. If it is known that poll_next may be called after stream has already finished, then this method can be used to ensure that it has defined semantics.

The poll_next method of a fused stream is guaranteed to return [None] after the underlying stream has finished.

§Examples
use futures::executor::block_on_stream;
use futures::stream::{self, StreamExt};
use futures::task::Poll;

let mut x = 0;
let stream = stream::poll_fn(|_| {
    x += 1;
    match x {
        0..=2 => Poll::Ready(Some(x)),
        3 => Poll::Ready(None),
        _ => panic!("should not happen")
    }
}).fuse();

let mut iter = block_on_stream(stream);
assert_eq!(Some(1), iter.next());
assert_eq!(Some(2), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.next());
// ...
source

fn by_ref(&mut self) -> &mut Self

Borrows a stream, rather than consuming it.

This is useful to allow applying stream adaptors while still retaining ownership of the original stream.

§Examples
use futures::stream::{self, StreamExt};

let mut stream = stream::iter(1..5);

let sum = stream.by_ref()
                .take(2)
                .fold(0, |a, b| async move { a + b })
                .await;
assert_eq!(sum, 3);

// You can use the stream again
let sum = stream.take(2)
                .fold(0, |a, b| async move { a + b })
                .await;
assert_eq!(sum, 7);
source

fn zip<St>(self, other: St) -> Zip<Self, St>
where St: Stream, Self: Sized,

An adapter for zipping two streams together.

The zipped stream waits for both streams to produce an item, and then returns that pair. If either stream ends then the zipped stream will also end.

§Examples
use futures::stream::{self, StreamExt};

let stream1 = stream::iter(1..=3);
let stream2 = stream::iter(5..=10);

let vec = stream1.zip(stream2)
                 .collect::<Vec<_>>()
                 .await;
assert_eq!(vec![(1, 5), (2, 6), (3, 7)], vec);
source

fn chain<St>(self, other: St) -> Chain<Self, St>
where St: Stream<Item = Self::Item>, Self: Sized,

Adapter for chaining two streams.

The resulting stream emits elements from the first stream, and when first stream reaches the end, emits the elements from the second stream.

use futures::stream::{self, StreamExt};

let stream1 = stream::iter(vec![Ok(10), Err(false)]);
let stream2 = stream::iter(vec![Err(true), Ok(20)]);

let stream = stream1.chain(stream2);

let result: Vec<_> = stream.collect().await;
assert_eq!(result, vec![
    Ok(10),
    Err(false),
    Err(true),
    Ok(20),
]);
source

fn peekable(self) -> Peekable<Self>
where Self: Sized,

Creates a new stream which exposes a peek method.

Calling peek returns a reference to the next item in the stream.

source

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where F: FnMut(&Self::Item), Self: Sized,

Do something with each item of this stream, afterwards passing it on.

This is similar to the Iterator::inspect method in the standard library where it allows easily inspecting each value as it passes through the stream, for example to debug what’s going on.

source

fn left_stream<B>(self) -> Either<Self, B>
where B: Stream<Item = Self::Item>, Self: Sized,

Wrap this stream in an Either stream, making it the left-hand variant of that Either.

This can be used in combination with the right_stream method to write if statements that evaluate to different streams in different branches.

source

fn right_stream<B>(self) -> Either<B, Self>
where B: Stream<Item = Self::Item>, Self: Sized,

Wrap this stream in an Either stream, making it the right-hand variant of that Either.

This can be used in combination with the left_stream method to write if statements that evaluate to different streams in different branches.

source

fn poll_next_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>
where Self: Unpin,

A convenience method for calling Stream::poll_next on [Unpin] stream types.

source

fn select_next_some(&mut self) -> SelectNextSome<'_, Self>
where Self: Unpin + FusedStream,

Returns a [Future] that resolves when the next item in this stream is ready.

This is similar to the next method, but it won’t resolve to [None] if used on an empty Stream. Instead, the returned future type will return true from FusedFuture::is_terminated when the Stream is empty, allowing select_next_some to be easily used with the select! macro.

If the future is polled after this Stream is empty it will panic. Using the future with a FusedFuture-aware primitive like the select! macro will prevent this.

§Examples
use futures::{future, select};
use futures::stream::{StreamExt, FuturesUnordered};

let mut fut = future::ready(1);
let mut async_tasks = FuturesUnordered::new();
let mut total = 0;
loop {
    select! {
        num = fut => {
            // First, the `ready` future completes.
            total += num;
            // Then we spawn a new task onto `async_tasks`,
            async_tasks.push(async { 5 });
        },
        // On the next iteration of the loop, the task we spawned
        // completes.
        num = async_tasks.select_next_some() => {
            total += num;
        }
        // Finally, both the `ready` future and `async_tasks` have
        // finished, so we enter the `complete` branch.
        complete => break,
    }
}
assert_eq!(total, 6);

Object Safety§

This trait is not object safe.

Implementors§

source§

impl<T> StreamExt for T
where T: Stream + ?Sized,