esp_hal/mcpwm/
operator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
//! # MCPWM Operator Module
//!
//! ## Overview
//! The `operator` is responsible for generating `PWM (Pulse Width Modulation)`
//! signals and handling various aspects related to `PWM` signal generation.
//!
//! ## Configuration
//! This module provides flexibility in configuring the PWM outputs. Its
//! implementation allows for motor control and other applications that demand
//! accurate pulse timing and sophisticated modulation techniques.

use core::marker::PhantomData;

use super::PeripheralGuard;
use crate::{
    gpio::interconnect::{OutputConnection, PeripheralOutput},
    mcpwm::{timer::Timer, PwmPeripheral},
    peripheral::{Peripheral, PeripheralRef},
};

/// Input/Output Stream descriptor for each channel
#[derive(Copy, Clone)]
#[allow(clippy::upper_case_acronyms, reason = "peripheral is unstable")]
pub enum PWMStream {
    /// PWM Stream A
    PWMA,
    /// PWM Stream B
    PWMB,
}

/// Configuration for MCPWM Operator DeadTime
/// It's recommended to reference the technical manual for configuration
#[derive(Copy, Clone)]
pub struct DeadTimeCfg {
    cfg_reg: u32,
}

#[allow(clippy::unusual_byte_groupings)]
impl DeadTimeCfg {
    // NOTE: it's a bit difficult to make this typestate
    // due to the different interconnections (FED/RED vs PWMxA/PWMxB) and
    // the many modes of operation

    /// B_OUTBYPASS
    const S0: u32 = 0b01_0000_0000_0000_0000;
    /// A_OUTBYPASS
    const S1: u32 = 0b00_1000_0000_0000_0000;
    /// RED_OUTINVERT
    const S2: u32 = 0b00_0010_0000_0000_0000;
    /// FED_OUTINVERT
    const S3: u32 = 0b00_0100_0000_0000_0000;
    /// RED_INSEL
    const S4: u32 = 0b00_0000_1000_0000_0000;
    /// FED_INSEL
    const S5: u32 = 0b00_0001_0000_0000_0000;
    /// A_OUTSWAP
    const S6: u32 = 0b00_0000_0010_0000_0000;
    /// B_OUTSWAP
    const S7: u32 = 0b00_0000_0100_0000_0000;
    /// DEB_MODE
    const _S8: u32 = 0b00_0000_0001_0000_0000;
    /// Use PT_clk instead of PWM_clk
    const CLK_SEL: u32 = 0b10_0000_0000_0000_0000;

    /// Uses the following configuration:
    /// * Clock: PWM_clk
    /// * Bypass: A & B
    /// * Inputs: A->A, B->B (InSel)
    /// * Outputs: A->A, B->B (OutSwap)
    /// * No Dual-edge B
    /// * No Invert
    /// * FED/RED update mode = immediate
    pub const fn new_bypass() -> DeadTimeCfg {
        DeadTimeCfg {
            cfg_reg: Self::S0 | Self::S1,
        }
    }

    /// Active High Complementary (AHC) from Technical Reference manual
    ///
    /// Will generate a PWM from input PWMA, such that output PWMA & PWMB are
    /// each others complement except during a transition in which they will
    /// be both off (as deadtime) such that they should never overlap, useful
    /// for H-Bridge type scenarios
    pub const fn new_ahc() -> DeadTimeCfg {
        DeadTimeCfg { cfg_reg: Self::S3 }
    }
    // TODO: Add some common configurations ~AHC~,ALC,AH,AC

    #[must_use]
    const fn set_flag(mut self, flag: u32, val: bool) -> Self {
        if val {
            self.cfg_reg |= flag;
        } else {
            self.cfg_reg &= !flag;
        }
        self
    }

    /// Sets FED/RED output inverter
    /// Inverts the output of the FED/RED module (excl DEB mode feedback)
    #[must_use]
    pub const fn invert_output(self, fed: bool, red: bool) -> Self {
        self.set_flag(Self::S3, fed).set_flag(Self::S2, red)
    }

    /// Swaps the output of a PWM Stream
    /// i.e. If both streams have output_swap enabled, the output of the module
    /// is swapped, while if only one is enabled that one 'copies' from the
    /// other stream
    #[must_use]
    pub const fn set_output_swap(self, stream: PWMStream, swap: bool) -> Self {
        self.set_flag(
            match stream {
                PWMStream::PWMA => Self::S6,
                PWMStream::PWMB => Self::S7,
            },
            swap,
        )
    }

    /// Set PWMA/PWMB stream to bypass everything except output_swap
    /// This means no deadtime is applied when enabled
    #[must_use]
    pub const fn set_bypass(self, stream: PWMStream, enable: bool) -> Self {
        self.set_flag(
            match stream {
                PWMStream::PWMA => Self::S1,
                PWMStream::PWMB => Self::S0,
            },
            enable,
        )
    }

    /// Select Between PWMClk & PT_Clk
    #[must_use]
    pub const fn select_clock(self, pwm_clock: bool) -> Self {
        self.set_flag(Self::CLK_SEL, pwm_clock)
    }

    /// Select which stream is used for the input of FED/RED
    #[must_use]
    pub const fn select_input(self, fed: PWMStream, red: PWMStream) -> Self {
        self.set_flag(
            Self::S5,
            match fed {
                PWMStream::PWMA => false,
                PWMStream::PWMB => true,
            },
        )
        .set_flag(
            Self::S4,
            match red {
                PWMStream::PWMA => false,
                PWMStream::PWMB => true,
            },
        )
    }
}

/// A MCPWM operator
///
/// The PWM Operator submodule has the following functions:
/// * Generates a PWM signal pair, based on timing references obtained from the
///   corresponding PWM timer.
/// * Each signal out of the PWM signal pair includes a specific pattern of dead
///   time. (Not yet implemented)
/// * Superimposes a carrier on the PWM signal, if configured to do so. (Not yet
///   implemented)
/// * Handles response under fault conditions. (Not yet implemented)
pub struct Operator<'d, const OP: u8, PWM> {
    phantom: PhantomData<&'d PWM>,
    _guard: PeripheralGuard,
}

impl<'d, const OP: u8, PWM: PwmPeripheral> Operator<'d, OP, PWM> {
    pub(super) fn new() -> Self {
        let guard = PeripheralGuard::new(PWM::peripheral());

        // Side note:
        // It would have been nice to deselect any timer reference on peripheral
        // initialization.
        // However experimentation (ESP32-S3) showed that writing `3` to timersel
        // will not disable the timer reference but instead act as though `2` was
        // written.
        Operator {
            phantom: PhantomData,
            _guard: guard,
        }
    }

    /// Select a [`Timer`] to be the timing reference for this operator
    ///
    /// ### Note:
    /// By default TIMER0 is used
    pub fn set_timer<const TIM: u8>(&mut self, timer: &Timer<TIM, PWM>) {
        let _ = timer;
        // SAFETY:
        // We only write to our OPERATORx_TIMERSEL register
        let block = unsafe { &*PWM::block() };
        block.operator_timersel().modify(|_, w| match OP {
            0 => unsafe { w.operator0_timersel().bits(TIM) },
            1 => unsafe { w.operator1_timersel().bits(TIM) },
            2 => unsafe { w.operator2_timersel().bits(TIM) },
            _ => {
                unreachable!()
            }
        });
    }

    /// Use the A output with the given pin and configuration
    pub fn with_pin_a(
        self,
        pin: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config: PwmPinConfig<true>,
    ) -> PwmPin<'d, PWM, OP, true> {
        PwmPin::new(pin, config)
    }

    /// Use the B output with the given pin and configuration
    pub fn with_pin_b(
        self,
        pin: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config: PwmPinConfig<false>,
    ) -> PwmPin<'d, PWM, OP, false> {
        PwmPin::new(pin, config)
    }

    /// Use both the A and the B output with the given pins and configurations
    pub fn with_pins(
        self,
        pin_a: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_a: PwmPinConfig<true>,
        pin_b: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_b: PwmPinConfig<false>,
    ) -> (PwmPin<'d, PWM, OP, true>, PwmPin<'d, PWM, OP, false>) {
        (PwmPin::new(pin_a, config_a), PwmPin::new(pin_b, config_b))
    }

    /// Link two pins using the deadtime generator
    ///
    /// This is useful for complementary or mirrored signals with or without
    /// configured deadtime
    pub fn with_linked_pins(
        self,
        pin_a: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_a: PwmPinConfig<true>,
        pin_b: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_b: PwmPinConfig<false>,
        config_dt: DeadTimeCfg,
    ) -> LinkedPins<'d, PWM, OP> {
        LinkedPins::new(pin_a, config_a, pin_b, config_b, config_dt)
    }
}

/// Configuration describing how the operator generates a signal on a connected
/// pin
pub struct PwmPinConfig<const IS_A: bool> {
    actions: PwmActions<IS_A>,
    update_method: PwmUpdateMethod,
}

impl<const IS_A: bool> PwmPinConfig<IS_A> {
    /// A configuration using [`PwmActions::UP_ACTIVE_HIGH`] and
    /// [`PwmUpdateMethod::SYNC_ON_ZERO`]
    pub const UP_ACTIVE_HIGH: Self =
        Self::new(PwmActions::UP_ACTIVE_HIGH, PwmUpdateMethod::SYNC_ON_ZERO);
    /// A configuration using [`PwmActions::UP_DOWN_ACTIVE_HIGH`] and
    /// [`PwmUpdateMethod::SYNC_ON_ZERO`]
    pub const UP_DOWN_ACTIVE_HIGH: Self = Self::new(
        PwmActions::UP_DOWN_ACTIVE_HIGH,
        PwmUpdateMethod::SYNC_ON_ZERO,
    );
    /// A configuration using [`PwmActions::empty`] and
    /// [`PwmUpdateMethod::empty`]
    pub const EMPTY: Self = Self::new(PwmActions::empty(), PwmUpdateMethod::empty());

    /// Get a configuration using the given `PwmActions` and `PwmUpdateMethod`
    pub const fn new(actions: PwmActions<IS_A>, update_method: PwmUpdateMethod) -> Self {
        PwmPinConfig {
            actions,
            update_method,
        }
    }
}

/// A pin driven by an MCPWM operator
pub struct PwmPin<'d, PWM, const OP: u8, const IS_A: bool> {
    pin: PeripheralRef<'d, OutputConnection>,
    phantom: PhantomData<PWM>,
    _guard: PeripheralGuard,
}

impl<'d, PWM: PwmPeripheral, const OP: u8, const IS_A: bool> PwmPin<'d, PWM, OP, IS_A> {
    fn new(
        pin: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config: PwmPinConfig<IS_A>,
    ) -> Self {
        crate::into_mapped_ref!(pin);

        let guard = PeripheralGuard::new(PWM::peripheral());

        let mut pin = PwmPin {
            pin,
            phantom: PhantomData,
            _guard: guard,
        };
        pin.set_actions(config.actions);
        pin.set_update_method(config.update_method);

        PWM::output_signal::<OP, IS_A>().connect_to(&mut pin.pin);
        pin.pin.enable_output(true);

        pin
    }

    /// Configure what actions should be taken on timing events
    pub fn set_actions(&mut self, value: PwmActions<IS_A>) {
        // SAFETY:
        // We only write to our GENx_x register
        let ch = unsafe { Self::ch() };
        let bits = value.0;

        // SAFETY:
        // `bits` is a valid bit pattern
        ch.gen((!IS_A) as usize).write(|w| unsafe { w.bits(bits) });
    }

    /// Set how a new timestamp syncs with the timer
    pub fn set_update_method(&mut self, update_method: PwmUpdateMethod) {
        // SAFETY:
        // We only write to our GENx_x_UPMETHOD register
        let ch = unsafe { Self::ch() };
        let bits = update_method.0;

        #[cfg(esp32s3)]
        let cfg = ch.cmpr_cfg();
        #[cfg(any(esp32, esp32c6, esp32h2))]
        let cfg = ch.gen_stmp_cfg();

        cfg.modify(|_, w| unsafe {
            if IS_A {
                w.a_upmethod().bits(bits)
            } else {
                w.b_upmethod().bits(bits)
            }
        });
    }

    /// Write a new timestamp.
    /// The written value will take effect according to the set
    /// [`PwmUpdateMethod`].
    pub fn set_timestamp(&mut self, value: u16) {
        // SAFETY:
        // We only write to our GENx_TSTMP_x register
        let ch = unsafe { Self::ch() };

        #[cfg(esp32s3)]
        if IS_A {
            ch.cmpr_value0().write(|w| unsafe { w.a().bits(value) });
        } else {
            ch.cmpr_value1().write(|w| unsafe { w.b().bits(value) });
        }

        #[cfg(any(esp32, esp32c6, esp32h2))]
        if IS_A {
            ch.gen_tstmp_a().write(|w| unsafe { w.a().bits(value) });
        } else {
            ch.gen_tstmp_b().write(|w| unsafe { w.b().bits(value) });
        }
    }

    /// Get the old timestamp.
    /// The value of the timestamp will take effect according to the set
    /// [`PwmUpdateMethod`].
    pub fn timestamp(&self) -> u16 {
        // SAFETY:
        // We only read to our GENx_TSTMP_x register
        let ch = unsafe { Self::ch() };

        #[cfg(esp32s3)]
        if IS_A {
            ch.cmpr_value0().read().a().bits()
        } else {
            ch.cmpr_value1().read().b().bits()
        }

        #[cfg(any(esp32, esp32c6, esp32h2))]
        if IS_A {
            ch.gen_tstmp_a().read().a().bits()
        } else {
            ch.gen_tstmp_b().read().b().bits()
        }
    }

    /// Get the period of the timer.
    pub fn period(&self) -> u16 {
        // SAFETY:
        // We only grant access to our CFG0 register with the lifetime of &mut self
        let block = unsafe { &*PWM::block() };

        let tim_select = block.operator_timersel().read();
        let tim = match OP {
            0 => tim_select.operator0_timersel().bits(),
            1 => tim_select.operator1_timersel().bits(),
            2 => tim_select.operator2_timersel().bits(),
            _ => {
                unreachable!()
            }
        };

        // SAFETY:
        // The CFG0 registers are identical for all timers so we can pretend they're
        // TIMER0_CFG0
        block.timer(tim as usize).cfg0().read().period().bits()
    }

    unsafe fn ch() -> &'static crate::peripherals::mcpwm0::CH {
        let block = unsafe { &*PWM::block() };
        block.ch(OP as usize)
    }
}

/// Implement no error type for the PwmPin because the method are infallible
impl<PWM: PwmPeripheral, const OP: u8, const IS_A: bool> embedded_hal::pwm::ErrorType
    for PwmPin<'_, PWM, OP, IS_A>
{
    type Error = core::convert::Infallible;
}

/// Implement the trait SetDutyCycle for PwmPin
impl<PWM: PwmPeripheral, const OP: u8, const IS_A: bool> embedded_hal::pwm::SetDutyCycle
    for PwmPin<'_, PWM, OP, IS_A>
{
    /// Get the max duty of the PwmPin
    fn max_duty_cycle(&self) -> u16 {
        self.period()
    }

    /// Set the max duty of the PwmPin
    fn set_duty_cycle(&mut self, duty: u16) -> Result<(), core::convert::Infallible> {
        self.set_timestamp(duty);
        Ok(())
    }
}

/// Two pins driven by the same timer and operator
///
/// Useful for complementary or mirrored signals with or without
/// configured deadtime.
///
/// # H-Bridge example
///
/// ```rust, no_run
#[doc = crate::before_snippet!()]
/// # use esp_hal::mcpwm::{McPwm, PeripheralClockConfig};
/// # use esp_hal::mcpwm::operator::{DeadTimeCfg, PwmPinConfig, PWMStream};
/// // active high complementary using PWMA input
/// let bridge_active = DeadTimeCfg::new_ahc();
/// // use PWMB as input for both outputs
/// let bridge_off = DeadTimeCfg::new_bypass().set_output_swap(PWMStream::PWMA,
/// true);
#[cfg_attr(
    esp32h2,
    doc = "let clock_cfg = PeripheralClockConfig::with_frequency(40.MHz()).unwrap();"
)]
#[cfg_attr(
    not(esp32h2),
    doc = "let clock_cfg = PeripheralClockConfig::with_frequency(32.MHz()).unwrap();"
)]
/// let mut mcpwm = McPwm::new(peripherals.MCPWM0, clock_cfg);
///
/// let mut pins = mcpwm.operator0.with_linked_pins(
///     peripherals.GPIO0,
///     PwmPinConfig::UP_DOWN_ACTIVE_HIGH, // use PWMA as our main input
///     peripherals.GPIO1,
///     PwmPinConfig::EMPTY, // keep PWMB "low"
///     bridge_off,
/// );
///
/// pins.set_falling_edge_deadtime(5);
/// pins.set_rising_edge_deadtime(5);
/// // pin_a: ________________________________________
/// // pin_b: ________________________________________
/// pins.set_timestamp_a(40); // 40% duty cycle if period configured to 100
/// pins.set_deadtime_cfg(bridge_active);
/// // pin_a: _______-------_____________-------______
/// // pin_b: ------_________-----------_________-----
/// # }
/// ```
pub struct LinkedPins<'d, PWM, const OP: u8> {
    pin_a: PwmPin<'d, PWM, OP, true>,
    pin_b: PwmPin<'d, PWM, OP, false>,
}

impl<'d, PWM: PwmPeripheral, const OP: u8> LinkedPins<'d, PWM, OP> {
    fn new(
        pin_a: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_a: PwmPinConfig<true>,
        pin_b: impl Peripheral<P = impl PeripheralOutput> + 'd,
        config_b: PwmPinConfig<false>,
        config_dt: DeadTimeCfg,
    ) -> Self {
        // setup deadtime config before enabling the pins
        #[cfg(esp32s3)]
        let dt_cfg = unsafe { Self::ch() }.db_cfg();
        #[cfg(not(esp32s3))]
        let dt_cfg = unsafe { Self::ch() }.dt_cfg();
        dt_cfg.write(|w| unsafe { w.bits(config_dt.cfg_reg) });

        let pin_a = PwmPin::new(pin_a, config_a);
        let pin_b = PwmPin::new(pin_b, config_b);

        LinkedPins { pin_a, pin_b }
    }

    /// Configure what actions should be taken on timing events
    pub fn set_actions_a(&mut self, value: PwmActions<true>) {
        self.pin_a.set_actions(value)
    }
    /// Configure what actions should be taken on timing events
    pub fn set_actions_b(&mut self, value: PwmActions<false>) {
        self.pin_b.set_actions(value)
    }

    /// Set how a new timestamp syncs with the timer
    pub fn set_update_method_a(&mut self, update_method: PwmUpdateMethod) {
        self.pin_a.set_update_method(update_method)
    }
    /// Set how a new timestamp syncs with the timer
    pub fn set_update_method_b(&mut self, update_method: PwmUpdateMethod) {
        self.pin_b.set_update_method(update_method)
    }

    /// Write a new timestamp.
    /// The written value will take effect according to the set
    /// [`PwmUpdateMethod`].
    pub fn set_timestamp_a(&mut self, value: u16) {
        self.pin_a.set_timestamp(value)
    }
    /// Write a new timestamp.
    /// The written value will take effect according to the set
    /// [`PwmUpdateMethod`].
    pub fn set_timestamp_b(&mut self, value: u16) {
        self.pin_a.set_timestamp(value)
    }

    /// Configure the deadtime generator
    pub fn set_deadtime_cfg(&mut self, config: DeadTimeCfg) {
        #[cfg(esp32s3)]
        let dt_cfg = unsafe { Self::ch() }.db_cfg();
        #[cfg(not(esp32s3))]
        let dt_cfg = unsafe { Self::ch() }.dt_cfg();
        dt_cfg.write(|w| unsafe { w.bits(config.cfg_reg) });
    }

    /// Set the deadtime generator rising edge delay
    pub fn set_rising_edge_deadtime(&mut self, dead_time: u16) {
        #[cfg(esp32s3)]
        let dt_red = unsafe { Self::ch() }.db_red_cfg();
        #[cfg(not(esp32s3))]
        let dt_red = unsafe { Self::ch() }.dt_red_cfg();
        dt_red.write(|w| unsafe { w.red().bits(dead_time) });
    }
    /// Set the deadtime generator falling edge delay
    pub fn set_falling_edge_deadtime(&mut self, dead_time: u16) {
        #[cfg(esp32s3)]
        let dt_fed = unsafe { Self::ch() }.db_fed_cfg();
        #[cfg(not(esp32s3))]
        let dt_fed = unsafe { Self::ch() }.dt_fed_cfg();
        dt_fed.write(|w| unsafe { w.fed().bits(dead_time) });
    }

    unsafe fn ch() -> &'static crate::peripherals::mcpwm0::CH {
        let block = unsafe { &*PWM::block() };
        block.ch(OP as usize)
    }
}

/// An action the operator applies to an output
#[non_exhaustive]
#[repr(u32)]
pub enum UpdateAction {
    /// Clear the output by setting it to a low level.
    SetLow  = 1,
    /// Set the output to a high level.
    SetHigh = 2,
    /// Change the current output level to the opposite value.
    /// If it is currently pulled high, pull it low, or vice versa.
    Toggle  = 3,
}

/// Settings for what actions should be taken on timing events
///
/// ### Note:
/// The hardware supports using a timestamp A event to trigger an action on
/// output B or vice versa. For clearer ownership semantics this HAL does not
/// support such configurations.
pub struct PwmActions<const IS_A: bool>(u32);

impl<const IS_A: bool> PwmActions<IS_A> {
    /// Using this setting together with a timer configured with
    /// [`PwmWorkingMode::Increase`](super::timer::PwmWorkingMode::Increase)
    /// will set the output high for a duration proportional to the set
    /// timestamp.
    pub const UP_ACTIVE_HIGH: Self = Self::empty()
        .on_up_counting_timer_equals_zero(UpdateAction::SetHigh)
        .on_up_counting_timer_equals_timestamp(UpdateAction::SetLow);

    /// Using this setting together with a timer configured with
    /// [`PwmWorkingMode::UpDown`](super::timer::PwmWorkingMode::UpDown) will
    /// set the output high for a duration proportional to the set
    /// timestamp.
    pub const UP_DOWN_ACTIVE_HIGH: Self = Self::empty()
        .on_down_counting_timer_equals_timestamp(UpdateAction::SetHigh)
        .on_up_counting_timer_equals_timestamp(UpdateAction::SetLow);

    /// `PwmActions` with no `UpdateAction`s set
    pub const fn empty() -> Self {
        PwmActions(0)
    }

    /// Choose an `UpdateAction` for an `UTEZ` event
    pub const fn on_up_counting_timer_equals_zero(self, action: UpdateAction) -> Self {
        self.with_value_at_offset(action as u32, 0)
    }

    /// Choose an `UpdateAction` for an `UTEP` event
    pub const fn on_up_counting_timer_equals_period(self, action: UpdateAction) -> Self {
        self.with_value_at_offset(action as u32, 2)
    }

    /// Choose an `UpdateAction` for an `UTEA`/`UTEB` event
    pub const fn on_up_counting_timer_equals_timestamp(self, action: UpdateAction) -> Self {
        match IS_A {
            true => self.with_value_at_offset(action as u32, 4),
            false => self.with_value_at_offset(action as u32, 6),
        }
    }

    /// Choose an `UpdateAction` for an `UTEA`/`UTEB` event where you can
    /// specify which of the A/B to use
    pub const fn on_up_counting_timer_equals_ch_timestamp<const CH_A: bool>(
        self,
        action: UpdateAction,
    ) -> Self {
        match CH_A {
            true => self.with_value_at_offset(action as u32, 4),
            false => self.with_value_at_offset(action as u32, 6),
        }
    }

    /// Choose an `UpdateAction` for an `DTEZ` event
    pub const fn on_down_counting_timer_equals_zero(self, action: UpdateAction) -> Self {
        self.with_value_at_offset(action as u32, 12)
    }

    /// Choose an `UpdateAction` for an `DTEP` event
    pub const fn on_down_counting_timer_equals_period(self, action: UpdateAction) -> Self {
        self.with_value_at_offset(action as u32, 14)
    }

    /// Choose an `UpdateAction` for an `DTEA`/`DTEB` event
    pub const fn on_down_counting_timer_equals_timestamp(self, action: UpdateAction) -> Self {
        match IS_A {
            true => self.with_value_at_offset(action as u32, 16),
            false => self.with_value_at_offset(action as u32, 18),
        }
    }

    /// Choose an `UpdateAction` for an `DTEA`/`DTEB` event where you can
    /// specify which of the A/B to use
    pub const fn on_down_counting_timer_equals_ch_timestamp<const CH_A: bool>(
        self,
        action: UpdateAction,
    ) -> Self {
        match CH_A {
            true => self.with_value_at_offset(action as u32, 16),
            false => self.with_value_at_offset(action as u32, 18),
        }
    }

    const fn with_value_at_offset(self, value: u32, offset: u32) -> Self {
        let mask = !(0b11 << offset);
        let value = (self.0 & mask) | (value << offset);
        PwmActions(value)
    }
}

/// Settings for when [`PwmPin::set_timestamp`] takes effect
///
/// Multiple syncing triggers can be set.
pub struct PwmUpdateMethod(u8);

impl PwmUpdateMethod {
    /// New timestamp will be applied immediately
    pub const SYNC_IMMEDIATLY: Self = Self::empty();
    /// New timestamp will be applied when timer is equal to zero
    pub const SYNC_ON_ZERO: Self = Self::empty().sync_on_timer_equals_zero();
    /// New timestamp will be applied when timer is equal to period
    pub const SYNC_ON_PERIOD: Self = Self::empty().sync_on_timer_equals_period();

    /// `PwmUpdateMethod` with no sync triggers.
    /// Corresponds to syncing immediately
    pub const fn empty() -> Self {
        PwmUpdateMethod(0)
    }

    /// Enable syncing new timestamp values when timer is equal to zero
    pub const fn sync_on_timer_equals_zero(mut self) -> Self {
        self.0 |= 0b0001;
        self
    }

    /// Enable syncing new timestamp values when timer is equal to period
    pub const fn sync_on_timer_equals_period(mut self) -> Self {
        self.0 |= 0b0010;
        self
    }
}