esp_idf_sys

Type Alias transaction_cb_t

Source
pub type transaction_cb_t = Option<unsafe extern "C" fn(trans: *mut spi_transaction_t)>;
Expand description

@endcond

Aliased Type§

enum transaction_cb_t {
    None,
    Some(unsafe extern "C" fn(_: *mut spi_transaction_t)),
}

Variants§

§1.0.0

None

No value.

§1.0.0

Some(unsafe extern "C" fn(_: *mut spi_transaction_t))

Some value of type T.

Implementations

§

impl<T> Option<T>

1.0.0 (const: 1.48.0)

pub const fn is_some(&self) -> bool

Returns true if the option is a [Some] value.

§Examples
let x: Option<u32> = Some(2);
assert_eq!(x.is_some(), true);

let x: Option<u32> = None;
assert_eq!(x.is_some(), false);
1.70.0

pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool

Returns true if the option is a [Some] and the value inside of it matches a predicate.

§Examples
let x: Option<u32> = Some(2);
assert_eq!(x.is_some_and(|x| x > 1), true);

let x: Option<u32> = Some(0);
assert_eq!(x.is_some_and(|x| x > 1), false);

let x: Option<u32> = None;
assert_eq!(x.is_some_and(|x| x > 1), false);
1.0.0 (const: 1.48.0)

pub const fn is_none(&self) -> bool

Returns true if the option is a [None] value.

§Examples
let x: Option<u32> = Some(2);
assert_eq!(x.is_none(), false);

let x: Option<u32> = None;
assert_eq!(x.is_none(), true);
1.82.0

pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool

Returns true if the option is a [None] or the value inside of it matches a predicate.

§Examples
let x: Option<u32> = Some(2);
assert_eq!(x.is_none_or(|x| x > 1), true);

let x: Option<u32> = Some(0);
assert_eq!(x.is_none_or(|x| x > 1), false);

let x: Option<u32> = None;
assert_eq!(x.is_none_or(|x| x > 1), true);
1.0.0 (const: 1.48.0)

pub const fn as_ref(&self) -> Option<&T>

Converts from &Option<T> to Option<&T>.

§Examples

Calculates the length of an Option<String> as an Option<[usize]> without moving the String. The map method takes the self argument by value, consuming the original, so this technique uses as_ref to first take an Option to a reference to the value inside the original.

let text: Option<String> = Some("Hello, world!".to_string());
// First, cast `Option<String>` to `Option<&String>` with `as_ref`,
// then consume *that* with `map`, leaving `text` on the stack.
let text_length: Option<usize> = text.as_ref().map(|s| s.len());
println!("still can print text: {text:?}");
1.0.0 (const: 1.83.0)

pub const fn as_mut(&mut self) -> Option<&mut T>

Converts from &mut Option<T> to Option<&mut T>.

§Examples
let mut x = Some(2);
match x.as_mut() {
    Some(v) => *v = 42,
    None => {},
}
assert_eq!(x, Some(42));
1.33.0 (const: 1.84.0)

pub const fn as_pin_ref(self: Pin<&Option<T>>) -> Option<Pin<&T>>

Converts from [Pin]<&Option<T>> to Option<[Pin]<&T>>.

1.33.0 (const: 1.84.0)

pub const fn as_pin_mut(self: Pin<&mut Option<T>>) -> Option<Pin<&mut T>>

Converts from [Pin]<&mut Option<T>> to Option<[Pin]<&mut T>>.

1.75.0 (const: 1.84.0)

pub const fn as_slice(&self) -> &[T]

Returns a slice of the contained value, if any. If this is None, an empty slice is returned. This can be useful to have a single type of iterator over an Option or slice.

Note: Should you have an Option<&T> and wish to get a slice of T, you can unpack it via opt.map_or(&[], std::slice::from_ref).

§Examples
assert_eq!(
    [Some(1234).as_slice(), None.as_slice()],
    [&[1234][..], &[][..]],
);

The inverse of this function is (discounting borrowing) [_]::first:

for i in [Some(1234_u16), None] {
    assert_eq!(i.as_ref(), i.as_slice().first());
}
1.75.0 (const: 1.84.0)

pub const fn as_mut_slice(&mut self) -> &mut [T]

Returns a mutable slice of the contained value, if any. If this is None, an empty slice is returned. This can be useful to have a single type of iterator over an Option or slice.

Note: Should you have an Option<&mut T> instead of a &mut Option<T>, which this method takes, you can obtain a mutable slice via opt.map_or(&mut [], std::slice::from_mut).

§Examples
assert_eq!(
    [Some(1234).as_mut_slice(), None.as_mut_slice()],
    [&mut [1234][..], &mut [][..]],
);

The result is a mutable slice of zero or one items that points into our original Option:

let mut x = Some(1234);
x.as_mut_slice()[0] += 1;
assert_eq!(x, Some(1235));

The inverse of this method (discounting borrowing) is [_]::first_mut:

assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
1.0.0 (const: 1.83.0)

pub const fn expect(self, msg: &str) -> T

Returns the contained [Some] value, consuming the self value.

§Panics

Panics if the value is a [None] with a custom panic message provided by msg.

§Examples
let x = Some("value");
assert_eq!(x.expect("fruits are healthy"), "value");
let x: Option<&str> = None;
x.expect("fruits are healthy"); // panics with `fruits are healthy`

We recommend that expect messages are used to describe the reason you expect the Option should be Some.

let item = slice.get(0)
    .expect("slice should not be empty");

Hint: If you’re having trouble remembering how to phrase expect error messages remember to focus on the word “should” as in “env variable should be set by blah” or “the given binary should be available and executable by the current user”.

For more detail on expect message styles and the reasoning behind our recommendation please refer to the section on “Common Message Styles” in the std::error module docs.

1.0.0 (const: 1.83.0)

pub const fn unwrap(self) -> T

Returns the contained [Some] value, consuming the self value.

Because this function may panic, its use is generally discouraged. Panics are meant for unrecoverable errors, and may abort the entire program.

Instead, prefer to use pattern matching and handle the [None] case explicitly, or call unwrap_or, unwrap_or_else, or unwrap_or_default. In functions returning Option, you can use the ? (try) operator.

§Panics

Panics if the self value equals [None].

§Examples
let x = Some("air");
assert_eq!(x.unwrap(), "air");
let x: Option<&str> = None;
assert_eq!(x.unwrap(), "air"); // fails
1.0.0

pub fn unwrap_or(self, default: T) -> T

Returns the contained [Some] value or a provided default.

Arguments passed to unwrap_or are eagerly evaluated; if you are passing the result of a function call, it is recommended to use unwrap_or_else, which is lazily evaluated.

§Examples
assert_eq!(Some("car").unwrap_or("bike"), "car");
assert_eq!(None.unwrap_or("bike"), "bike");
1.0.0

pub fn unwrap_or_else<F>(self, f: F) -> T
where F: FnOnce() -> T,

Returns the contained [Some] value or computes it from a closure.

§Examples
let k = 10;
assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1.0.0

pub fn unwrap_or_default(self) -> T
where T: Default,

Returns the contained [Some] value or a default.

Consumes the self argument then, if [Some], returns the contained value, otherwise if [None], returns the default value for that type.

§Examples
let x: Option<u32> = None;
let y: Option<u32> = Some(12);

assert_eq!(x.unwrap_or_default(), 0);
assert_eq!(y.unwrap_or_default(), 12);
1.58.0 (const: 1.83.0)

pub const unsafe fn unwrap_unchecked(self) -> T

Returns the contained [Some] value, consuming the self value, without checking that the value is not [None].

§Safety

Calling this method on [None] is undefined behavior.

§Examples
let x = Some("air");
assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
let x: Option<&str> = None;
assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1.0.0

pub fn map<U, F>(self, f: F) -> Option<U>
where F: FnOnce(T) -> U,

Maps an Option<T> to Option<U> by applying a function to a contained value (if Some) or returns None (if None).

§Examples

Calculates the length of an Option<String> as an Option<[usize]>, consuming the original:

let maybe_some_string = Some(String::from("Hello, World!"));
// `Option::map` takes self *by value*, consuming `maybe_some_string`
let maybe_some_len = maybe_some_string.map(|s| s.len());
assert_eq!(maybe_some_len, Some(13));

let x: Option<&str> = None;
assert_eq!(x.map(|s| s.len()), None);
1.76.0

pub fn inspect<F>(self, f: F) -> Option<T>
where F: FnOnce(&T),

Calls a function with a reference to the contained value if [Some].

Returns the original option.

§Examples
let list = vec![1, 2, 3];

// prints "got: 2"
let x = list
    .get(1)
    .inspect(|x| println!("got: {x}"))
    .expect("list should be long enough");

// prints nothing
list.get(5).inspect(|x| println!("got: {x}"));
1.0.0

pub fn map_or<U, F>(self, default: U, f: F) -> U
where F: FnOnce(T) -> U,

Returns the provided default result (if none), or applies a function to the contained value (if any).

Arguments passed to map_or are eagerly evaluated; if you are passing the result of a function call, it is recommended to use map_or_else, which is lazily evaluated.

§Examples
let x = Some("foo");
assert_eq!(x.map_or(42, |v| v.len()), 3);

let x: Option<&str> = None;
assert_eq!(x.map_or(42, |v| v.len()), 42);
1.0.0

pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
where D: FnOnce() -> U, F: FnOnce(T) -> U,

Computes a default function result (if none), or applies a different function to the contained value (if any).

§Basic examples
let k = 21;

let x = Some("foo");
assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);

let x: Option<&str> = None;
assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
§Handling a Result-based fallback

A somewhat common occurrence when dealing with optional values in combination with [Result<T, E>] is the case where one wants to invoke a fallible fallback if the option is not present. This example parses a command line argument (if present), or the contents of a file to an integer. However, unlike accessing the command line argument, reading the file is fallible, so it must be wrapped with Ok.

let v: u64 = std::env::args()
   .nth(1)
   .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
   .parse()?;
1.0.0

pub fn ok_or<E>(self, err: E) -> Result<T, E>

Transforms the Option<T> into a [Result<T, E>], mapping Some(v) to Ok(v) and [None] to Err(err).

Arguments passed to ok_or are eagerly evaluated; if you are passing the result of a function call, it is recommended to use ok_or_else, which is lazily evaluated.

§Examples
let x = Some("foo");
assert_eq!(x.ok_or(0), Ok("foo"));

let x: Option<&str> = None;
assert_eq!(x.ok_or(0), Err(0));
1.0.0

pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
where F: FnOnce() -> E,

Transforms the Option<T> into a [Result<T, E>], mapping Some(v) to Ok(v) and [None] to Err(err()).

§Examples
let x = Some("foo");
assert_eq!(x.ok_or_else(|| 0), Ok("foo"));

let x: Option<&str> = None;
assert_eq!(x.ok_or_else(|| 0), Err(0));
1.40.0

pub fn as_deref(&self) -> Option<&<T as Deref>::Target>
where T: Deref,

Converts from Option<T> (or &Option<T>) to Option<&T::Target>.

Leaves the original Option in-place, creating a new one with a reference to the original one, additionally coercing the contents via [Deref].

§Examples
let x: Option<String> = Some("hey".to_owned());
assert_eq!(x.as_deref(), Some("hey"));

let x: Option<String> = None;
assert_eq!(x.as_deref(), None);
1.40.0

pub fn as_deref_mut(&mut self) -> Option<&mut <T as Deref>::Target>
where T: DerefMut,

Converts from Option<T> (or &mut Option<T>) to Option<&mut T::Target>.

Leaves the original Option in-place, creating a new one containing a mutable reference to the inner type’s [Deref::Target] type.

§Examples
let mut x: Option<String> = Some("hey".to_owned());
assert_eq!(x.as_deref_mut().map(|x| {
    x.make_ascii_uppercase();
    x
}), Some("HEY".to_owned().as_mut_str()));
1.0.0

pub fn iter(&self) -> Iter<'_, T>

Returns an iterator over the possibly contained value.

§Examples
let x = Some(4);
assert_eq!(x.iter().next(), Some(&4));

let x: Option<u32> = None;
assert_eq!(x.iter().next(), None);
1.0.0

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Returns a mutable iterator over the possibly contained value.

§Examples
let mut x = Some(4);
match x.iter_mut().next() {
    Some(v) => *v = 42,
    None => {},
}
assert_eq!(x, Some(42));

let mut x: Option<u32> = None;
assert_eq!(x.iter_mut().next(), None);
1.0.0

pub fn and<U>(self, optb: Option<U>) -> Option<U>

Returns [None] if the option is [None], otherwise returns optb.

Arguments passed to and are eagerly evaluated; if you are passing the result of a function call, it is recommended to use and_then, which is lazily evaluated.

§Examples
let x = Some(2);
let y: Option<&str> = None;
assert_eq!(x.and(y), None);

let x: Option<u32> = None;
let y = Some("foo");
assert_eq!(x.and(y), None);

let x = Some(2);
let y = Some("foo");
assert_eq!(x.and(y), Some("foo"));

let x: Option<u32> = None;
let y: Option<&str> = None;
assert_eq!(x.and(y), None);
1.0.0

pub fn and_then<U, F>(self, f: F) -> Option<U>
where F: FnOnce(T) -> Option<U>,

Returns [None] if the option is [None], otherwise calls f with the wrapped value and returns the result.

Some languages call this operation flatmap.

§Examples
fn sq_then_to_string(x: u32) -> Option<String> {
    x.checked_mul(x).map(|sq| sq.to_string())
}

assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
assert_eq!(None.and_then(sq_then_to_string), None);

Often used to chain fallible operations that may return [None].

let arr_2d = [["A0", "A1"], ["B0", "B1"]];

let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
assert_eq!(item_0_1, Some(&"A1"));

let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
assert_eq!(item_2_0, None);
1.27.0

pub fn filter<P>(self, predicate: P) -> Option<T>
where P: FnOnce(&T) -> bool,

Returns [None] if the option is [None], otherwise calls predicate with the wrapped value and returns:

  • Some(t) if predicate returns true (where t is the wrapped value), and
  • [None] if predicate returns false.

This function works similar to [Iterator::filter()]. You can imagine the Option<T> being an iterator over one or zero elements. filter() lets you decide which elements to keep.

§Examples
fn is_even(n: &i32) -> bool {
    n % 2 == 0
}

assert_eq!(None.filter(is_even), None);
assert_eq!(Some(3).filter(is_even), None);
assert_eq!(Some(4).filter(is_even), Some(4));
1.0.0

pub fn or(self, optb: Option<T>) -> Option<T>

Returns the option if it contains a value, otherwise returns optb.

Arguments passed to or are eagerly evaluated; if you are passing the result of a function call, it is recommended to use or_else, which is lazily evaluated.

§Examples
let x = Some(2);
let y = None;
assert_eq!(x.or(y), Some(2));

let x = None;
let y = Some(100);
assert_eq!(x.or(y), Some(100));

let x = Some(2);
let y = Some(100);
assert_eq!(x.or(y), Some(2));

let x: Option<u32> = None;
let y = None;
assert_eq!(x.or(y), None);
1.0.0

pub fn or_else<F>(self, f: F) -> Option<T>
where F: FnOnce() -> Option<T>,

Returns the option if it contains a value, otherwise calls f and returns the result.

§Examples
fn nobody() -> Option<&'static str> { None }
fn vikings() -> Option<&'static str> { Some("vikings") }

assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
assert_eq!(None.or_else(vikings), Some("vikings"));
assert_eq!(None.or_else(nobody), None);
1.37.0

pub fn xor(self, optb: Option<T>) -> Option<T>

Returns [Some] if exactly one of self, optb is [Some], otherwise returns [None].

§Examples
let x = Some(2);
let y: Option<u32> = None;
assert_eq!(x.xor(y), Some(2));

let x: Option<u32> = None;
let y = Some(2);
assert_eq!(x.xor(y), Some(2));

let x = Some(2);
let y = Some(2);
assert_eq!(x.xor(y), None);

let x: Option<u32> = None;
let y: Option<u32> = None;
assert_eq!(x.xor(y), None);
1.53.0

pub fn insert(&mut self, value: T) -> &mut T

Inserts value into the option, then returns a mutable reference to it.

If the option already contains a value, the old value is dropped.

See also [Option::get_or_insert], which doesn’t update the value if the option already contains [Some].

§Example
let mut opt = None;
let val = opt.insert(1);
assert_eq!(*val, 1);
assert_eq!(opt.unwrap(), 1);
let val = opt.insert(2);
assert_eq!(*val, 2);
*val = 3;
assert_eq!(opt.unwrap(), 3);
1.20.0

pub fn get_or_insert(&mut self, value: T) -> &mut T

Inserts value into the option if it is [None], then returns a mutable reference to the contained value.

See also [Option::insert], which updates the value even if the option already contains [Some].

§Examples
let mut x = None;

{
    let y: &mut u32 = x.get_or_insert(5);
    assert_eq!(y, &5);

    *y = 7;
}

assert_eq!(x, Some(7));
1.83.0

pub fn get_or_insert_default(&mut self) -> &mut T
where T: Default,

Inserts the default value into the option if it is [None], then returns a mutable reference to the contained value.

§Examples
let mut x = None;

{
    let y: &mut u32 = x.get_or_insert_default();
    assert_eq!(y, &0);

    *y = 7;
}

assert_eq!(x, Some(7));
1.20.0

pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
where F: FnOnce() -> T,

Inserts a value computed from f into the option if it is [None], then returns a mutable reference to the contained value.

§Examples
let mut x = None;

{
    let y: &mut u32 = x.get_or_insert_with(|| 5);
    assert_eq!(y, &5);

    *y = 7;
}

assert_eq!(x, Some(7));
1.0.0 (const: 1.83.0)

pub const fn take(&mut self) -> Option<T>

Takes the value out of the option, leaving a [None] in its place.

§Examples
let mut x = Some(2);
let y = x.take();
assert_eq!(x, None);
assert_eq!(y, Some(2));

let mut x: Option<u32> = None;
let y = x.take();
assert_eq!(x, None);
assert_eq!(y, None);
1.80.0

pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
where P: FnOnce(&mut T) -> bool,

Takes the value out of the option, but only if the predicate evaluates to true on a mutable reference to the value.

In other words, replaces self with None if the predicate returns true. This method operates similar to [Option::take] but conditional.

§Examples
let mut x = Some(42);

let prev = x.take_if(|v| if *v == 42 {
    *v += 1;
    false
} else {
    false
});
assert_eq!(x, Some(43));
assert_eq!(prev, None);

let prev = x.take_if(|v| *v == 43);
assert_eq!(x, None);
assert_eq!(prev, Some(43));
1.31.0 (const: 1.83.0)

pub const fn replace(&mut self, value: T) -> Option<T>

Replaces the actual value in the option by the value given in parameter, returning the old value if present, leaving a [Some] in its place without deinitializing either one.

§Examples
let mut x = Some(2);
let old = x.replace(5);
assert_eq!(x, Some(5));
assert_eq!(old, Some(2));

let mut x = None;
let old = x.replace(3);
assert_eq!(x, Some(3));
assert_eq!(old, None);
1.46.0

pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)>

Zips self with another Option.

If self is Some(s) and other is Some(o), this method returns Some((s, o)). Otherwise, None is returned.

§Examples
let x = Some(1);
let y = Some("hi");
let z = None::<u8>;

assert_eq!(x.zip(y), Some((1, "hi")));
assert_eq!(x.zip(z), None);

pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
where F: FnOnce(T, U) -> R,

🔬This is a nightly-only experimental API. (option_zip)

Zips self and another Option with function f.

If self is Some(s) and other is Some(o), this method returns Some(f(s, o)). Otherwise, None is returned.

§Examples
#![feature(option_zip)]

#[derive(Debug, PartialEq)]
struct Point {
    x: f64,
    y: f64,
}

impl Point {
    fn new(x: f64, y: f64) -> Self {
        Self { x, y }
    }
}

let x = Some(17.5);
let y = Some(42.7);

assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
assert_eq!(x.zip_with(None, Point::new), None);

Trait Implementations

1.0.0§

impl<T> Clone for Option<T>
where T: Clone,

§

fn clone(&self) -> Option<T>

Returns a copy of the value. Read more
§

fn clone_from(&mut self, source: &Option<T>)

Performs copy-assignment from source. Read more
1.0.0§

impl<T> Debug for Option<T>
where T: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0§

impl<T> Default for Option<T>

§

fn default() -> Option<T>

Returns [None][Option::None].

§Examples
let opt: Option<u32> = Option::default();
assert!(opt.is_none());
1.12.0§

impl<T> From<T> for Option<T>

§

fn from(val: T) -> Option<T>

Moves val into a new [Some].

§Examples
let o: Option<u8> = Option::from(67);

assert_eq!(Some(67), o);
1.0.0§

impl<A, V> FromIterator<Option<A>> for Option<V>
where V: FromIterator<A>,

§

fn from_iter<I>(iter: I) -> Option<V>
where I: IntoIterator<Item = Option<A>>,

Takes each element in the [Iterator]: if it is [None][Option::None], no further elements are taken, and the [None][Option::None] is returned. Should no [None][Option::None] occur, a container of type V containing the values of each [Option] is returned.

§Examples

Here is an example which increments every integer in a vector. We use the checked variant of add that returns None when the calculation would result in an overflow.

let items = vec![0_u16, 1, 2];

let res: Option<Vec<u16>> = items
    .iter()
    .map(|x| x.checked_add(1))
    .collect();

assert_eq!(res, Some(vec![1, 2, 3]));

As you can see, this will return the expected, valid items.

Here is another example that tries to subtract one from another list of integers, this time checking for underflow:

let items = vec![2_u16, 1, 0];

let res: Option<Vec<u16>> = items
    .iter()
    .map(|x| x.checked_sub(1))
    .collect();

assert_eq!(res, None);

Since the last element is zero, it would underflow. Thus, the resulting value is None.

Here is a variation on the previous example, showing that no further elements are taken from iter after the first None.

let items = vec![3_u16, 2, 1, 10];

let mut shared = 0;

let res: Option<Vec<u16>> = items
    .iter()
    .map(|x| { shared += x; x.checked_sub(2) })
    .collect();

assert_eq!(res, None);
assert_eq!(shared, 6);

Since the third element caused an underflow, no further elements were taken, so the final value of shared is 6 (= 3 + 2 + 1), not 16.

§

impl<T> FromResidual<Option<Infallible>> for Option<T>

§

fn from_residual(residual: Option<Infallible>) -> Option<T>

🔬This is a nightly-only experimental API. (try_trait_v2)
Constructs the type from a compatible Residual type. Read more
§

impl<T> FromResidual<Yeet<()>> for Option<T>

§

fn from_residual(_: Yeet<()>) -> Option<T>

🔬This is a nightly-only experimental API. (try_trait_v2)
Constructs the type from a compatible Residual type. Read more
1.0.0§

impl<T> Hash for Option<T>
where T: Hash,

§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given [Hasher]. Read more
1.3.0§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given [Hasher]. Read more
1.0.0§

impl<T> IntoIterator for Option<T>

§

fn into_iter(self) -> IntoIter<T>

Returns a consuming iterator over the possibly contained value.

§Examples
let x = Some("string");
let v: Vec<&str> = x.into_iter().collect();
assert_eq!(v, ["string"]);

let x = None;
let v: Vec<&str> = x.into_iter().collect();
assert!(v.is_empty());
§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?
1.0.0§

impl<T> Ord for Option<T>
where T: Ord,

§

fn cmp(&self, other: &Option<T>) -> Ordering

This method returns an [Ordering] between self and other. Read more
1.21.0§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
1.0.0§

impl<T> PartialEq for Option<T>
where T: PartialEq,

§

fn eq(&self, other: &Option<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0§

impl<T> PartialOrd for Option<T>
where T: PartialOrd,

§

fn partial_cmp(&self, other: &Option<T>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
1.37.0§

impl<T, U> Product<Option<U>> for Option<T>
where T: Product<U>,

§

fn product<I>(iter: I) -> Option<T>
where I: Iterator<Item = Option<U>>,

Takes each element in the [Iterator]: if it is a [None], no further elements are taken, and the [None] is returned. Should no [None] occur, the product of all elements is returned.

§Examples

This multiplies each number in a vector of strings, if a string could not be parsed the operation returns None:

let nums = vec!["5", "10", "1", "2"];
let total: Option<usize> = nums.iter().map(|w| w.parse::<usize>().ok()).product();
assert_eq!(total, Some(100));
let nums = vec!["5", "10", "one", "2"];
let total: Option<usize> = nums.iter().map(|w| w.parse::<usize>().ok()).product();
assert_eq!(total, None);
1.37.0§

impl<T, U> Sum<Option<U>> for Option<T>
where T: Sum<U>,

§

fn sum<I>(iter: I) -> Option<T>
where I: Iterator<Item = Option<U>>,

Takes each element in the [Iterator]: if it is a [None], no further elements are taken, and the [None] is returned. Should no [None] occur, the sum of all elements is returned.

§Examples

This sums up the position of the character ‘a’ in a vector of strings, if a word did not have the character ‘a’ the operation returns None:

let words = vec!["have", "a", "great", "day"];
let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
assert_eq!(total, Some(5));
let words = vec!["have", "a", "good", "day"];
let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
assert_eq!(total, None);
§

impl<T> Try for Option<T>

§

type Output = T

🔬This is a nightly-only experimental API. (try_trait_v2)
The type of the value produced by ? when not short-circuiting.
§

type Residual = Option<Infallible>

🔬This is a nightly-only experimental API. (try_trait_v2)
The type of the value passed to [FromResidual::from_residual] as part of ? when short-circuiting. Read more
§

fn from_output(output: <Option<T> as Try>::Output) -> Option<T>

🔬This is a nightly-only experimental API. (try_trait_v2)
Constructs the type from its Output type. Read more
§

fn branch( self, ) -> ControlFlow<<Option<T> as Try>::Residual, <Option<T> as Try>::Output>

🔬This is a nightly-only experimental API. (try_trait_v2)
Used in ? to decide whether the operator should produce a value (because this returned [ControlFlow::Continue]) or propagate a value back to the caller (because this returned [ControlFlow::Break]). Read more
1.0.0§

impl<T> Copy for Option<T>
where T: Copy,

1.0.0§

impl<T> Eq for Option<T>
where T: Eq,

1.0.0§

impl<T> StructuralPartialEq for Option<T>