esp_wifi/compat/
common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#![allow(unused)]

use core::{
    cell::RefCell,
    fmt::Write,
    mem::size_of_val,
    ptr::{self, addr_of, addr_of_mut},
};

use esp_wifi_sys::include::malloc;

use super::malloc::free;
use crate::{
    binary::c_types::{c_int, c_void},
    memory_fence::memory_fence,
    preempt::current_task,
    timer::yield_task,
};

pub(crate) const OSI_FUNCS_TIME_BLOCKING: u32 = u32::MAX;

#[derive(Clone, Copy, Debug)]
struct Mutex {
    locking_pid: usize,
    count: u32,
    recursive: bool,
}

pub(crate) struct ConcurrentQueue {
    raw_queue: critical_section::Mutex<RefCell<RawQueue>>,
}

impl ConcurrentQueue {
    pub(crate) fn new(count: usize, item_size: usize) -> Self {
        Self {
            raw_queue: critical_section::Mutex::new(RefCell::new(RawQueue::new(count, item_size))),
        }
    }

    fn release_storage(&mut self) {
        critical_section::with(|cs| unsafe {
            self.raw_queue.borrow_ref_mut(cs).release_storage();
        })
    }

    pub(crate) fn enqueue(&mut self, item: *mut c_void) -> i32 {
        critical_section::with(|cs| unsafe { self.raw_queue.borrow_ref_mut(cs).enqueue(item) })
    }

    pub(crate) fn try_dequeue(&mut self, item: *mut c_void) -> bool {
        critical_section::with(|cs| unsafe { self.raw_queue.borrow_ref_mut(cs).try_dequeue(item) })
    }

    pub(crate) fn remove(&mut self, item: *mut c_void) {
        critical_section::with(|cs| unsafe { self.raw_queue.borrow_ref_mut(cs).remove(item) });
    }

    pub(crate) fn count(&self) -> usize {
        critical_section::with(|cs| unsafe { self.raw_queue.borrow_ref(cs).count() })
    }
}

impl Drop for ConcurrentQueue {
    fn drop(&mut self) {
        self.release_storage();
    }
}

/// A naive and pretty much unsafe queue to back the queues used in drivers and
/// supplicant code.
///
/// The [ConcurrentQueue] wrapper should be used.
pub struct RawQueue {
    capacity: usize,
    item_size: usize,
    current_read: usize,
    current_write: usize,
    storage: *mut u8,
}

impl RawQueue {
    /// This allocates underlying storage. See [release_storage]
    pub fn new(capacity: usize, item_size: usize) -> Self {
        let storage = unsafe { malloc((capacity * item_size) as u32) as *mut u8 };
        assert!(!storage.is_null());

        Self {
            capacity,
            item_size,
            current_read: 0,
            current_write: 0,
            storage,
        }
    }

    /// Call `release_storage` to deallocate the underlying storage
    unsafe fn release_storage(&mut self) {
        unsafe {
            free(self.storage);
        }
        self.storage = core::ptr::null_mut();
    }

    unsafe fn enqueue(&mut self, item: *mut c_void) -> i32 {
        if self.count() < self.capacity {
            unsafe {
                let p = self.storage.byte_add(self.item_size * self.current_write);
                p.copy_from(item as *mut u8, self.item_size);
                self.current_write = (self.current_write + 1) % self.capacity;
            }

            1
        } else {
            0
        }
    }

    unsafe fn try_dequeue(&mut self, item: *mut c_void) -> bool {
        if self.count() > 0 {
            unsafe {
                let p = self.storage.byte_add(self.item_size * self.current_read) as *const c_void;
                item.copy_from(p, self.item_size);
                self.current_read = (self.current_read + 1) % self.capacity;
            }
            true
        } else {
            false
        }
    }

    unsafe fn remove(&mut self, item: *mut c_void) {
        // do what the ESP-IDF implementations does ...
        // just remove all elements and add them back except the one we need to remove -
        // good enough for now
        let item_slice = core::slice::from_raw_parts_mut(item as *mut u8, self.item_size);
        let count = self.count();

        if count == 0 {
            return;
        }

        let tmp_item = crate::compat::malloc::malloc(self.item_size);

        if tmp_item.is_null() {
            panic!("Out of memory");
        }

        for _ in 0..count {
            if self.try_dequeue(tmp_item as *mut c_void) {
                let tmp_slice = core::slice::from_raw_parts_mut(tmp_item, self.item_size);
                if tmp_slice != item_slice {
                    self.enqueue(tmp_item as *mut c_void);
                }
            }
        }

        crate::compat::malloc::free(tmp_item);
    }

    unsafe fn count(&self) -> usize {
        if self.current_write >= self.current_read {
            self.current_write - self.current_read
        } else {
            self.capacity - self.current_read + self.current_write
        }
    }
}

pub unsafe fn str_from_c<'a>(s: *const u8) -> &'a str {
    let c_str = core::ffi::CStr::from_ptr(s.cast());
    core::str::from_utf8_unchecked(c_str.to_bytes())
}

#[no_mangle]
unsafe extern "C" fn strnlen(chars: *const u8, maxlen: usize) -> usize {
    let mut len = 0;
    loop {
        if chars.offset(len).read_volatile() == 0 {
            break;
        }
        len += 1;
    }

    len as usize
}

pub(crate) fn sem_create(max: u32, init: u32) -> *mut c_void {
    unsafe {
        let ptr = malloc(4) as *mut u32;
        ptr.write_volatile(init);

        trace!("sem created res = {:?}", ptr);
        ptr.cast()
    }
}

pub(crate) fn sem_delete(semphr: *mut c_void) {
    trace!(">>> sem delete");

    unsafe {
        free(semphr.cast());
    }
}

pub(crate) fn sem_take(semphr: *mut c_void, tick: u32) -> i32 {
    trace!(">>>> semphr_take {:?} block_time_tick {}", semphr, tick);

    let forever = tick == OSI_FUNCS_TIME_BLOCKING;
    let timeout = tick as u64;
    let start = crate::timer::systimer_count();

    let sem = semphr as *mut u32;

    'outer: loop {
        let res = critical_section::with(|_| unsafe {
            memory_fence();
            let cnt = *sem;
            if cnt > 0 {
                *sem = cnt - 1;
                1
            } else {
                0
            }
        });

        if res == 1 {
            trace!(">>>> return from semphr_take");
            return 1;
        }

        if !forever && crate::timer::elapsed_time_since(start) > timeout {
            break 'outer;
        }

        yield_task();
    }

    trace!(">>>> return from semphr_take with timeout");
    0
}

pub(crate) fn sem_give(semphr: *mut c_void) -> i32 {
    trace!("semphr_give {:?}", semphr);
    let sem = semphr as *mut u32;

    critical_section::with(|_| unsafe {
        let cnt = *sem;
        *sem = cnt + 1;
        1
    })
}

pub(crate) fn thread_sem_get() -> *mut c_void {
    trace!("wifi_thread_semphr_get");
    unsafe { &mut ((*current_task()).thread_semaphore) as *mut _ as *mut c_void }
}

pub(crate) fn create_recursive_mutex() -> *mut c_void {
    let mutex = Mutex {
        locking_pid: 0xffff_ffff,
        count: 0,
        recursive: true,
    };

    let ptr = unsafe { malloc(size_of_val(&mutex) as u32) as *mut Mutex };
    unsafe {
        ptr.write(mutex);
    }
    memory_fence();

    trace!("recursive_mutex_create called {:?}", ptr);
    ptr as *mut c_void
}

pub(crate) fn mutex_delete(mutex: *mut c_void) {
    let ptr = mutex as *mut Mutex;
    unsafe {
        free(mutex.cast());
    }
}

/// Lock a mutex. Block until successful.
pub(crate) fn lock_mutex(mutex: *mut c_void) -> i32 {
    trace!("mutex_lock ptr = {:?}", mutex);

    let ptr = mutex as *mut Mutex;
    let current_task = current_task() as usize;

    loop {
        let mutex_locked = critical_section::with(|_| unsafe {
            if (*ptr).count == 0 {
                (*ptr).locking_pid = current_task;
                (*ptr).count += 1;
                true
            } else if (*ptr).locking_pid == current_task {
                (*ptr).count += 1;
                true
            } else {
                false
            }
        });
        memory_fence();

        if mutex_locked {
            return 1;
        }

        yield_task();
    }
}

pub(crate) fn unlock_mutex(mutex: *mut c_void) -> i32 {
    trace!("mutex_unlock {:?}", mutex);

    let ptr = mutex as *mut Mutex;
    critical_section::with(|_| unsafe {
        memory_fence();
        if (*ptr).count > 0 {
            (*ptr).count -= 1;
            1
        } else {
            0
        }
    })
}

pub(crate) fn create_queue(queue_len: c_int, item_size: c_int) -> *mut ConcurrentQueue {
    trace!("wifi_create_queue len={} size={}", queue_len, item_size,);

    let queue = ConcurrentQueue::new(queue_len as usize, item_size as usize);
    let ptr = unsafe { malloc(size_of_val(&queue) as u32) as *mut ConcurrentQueue };
    unsafe {
        ptr.write(queue);
    }

    trace!("created queue @{:?}", ptr);

    ptr
}

pub(crate) fn delete_queue(queue: *mut ConcurrentQueue) {
    trace!("delete_queue {:?}", queue);

    unsafe {
        ptr::drop_in_place(queue);
        crate::compat::malloc::free(queue.cast());
    }
}

pub(crate) fn send_queued(
    queue: *mut ConcurrentQueue,
    item: *mut c_void,
    block_time_tick: u32,
) -> i32 {
    trace!(
        "queue_send queue {:?} item {:x} block_time_tick {}",
        queue,
        item as usize,
        block_time_tick
    );

    let queue: *mut ConcurrentQueue = queue.cast();
    unsafe { (*queue).enqueue(item) }
}

pub(crate) fn receive_queued(
    queue: *mut ConcurrentQueue,
    item: *mut c_void,
    block_time_tick: u32,
) -> i32 {
    trace!(
        "queue_recv {:?} item {:?} block_time_tick {}",
        queue,
        item,
        block_time_tick
    );

    let forever = block_time_tick == OSI_FUNCS_TIME_BLOCKING;
    let timeout = block_time_tick as u64;
    let start = crate::timer::systimer_count();

    loop {
        if unsafe { (*queue).try_dequeue(item) } {
            trace!("received");
            return 1;
        }

        if !forever && crate::timer::elapsed_time_since(start) > timeout {
            trace!("queue_recv returns with timeout");
            return -1;
        }

        yield_task();
    }
}

pub(crate) fn number_of_messages_in_queue(queue: *const ConcurrentQueue) -> u32 {
    trace!("queue_msg_waiting {:?}", queue);

    let queue: *const ConcurrentQueue = queue.cast();
    unsafe { (*queue).count() as u32 }
}

/// Implementation of sleep() from newlib in esp-idf.
/// components/newlib/time.c
#[no_mangle]
pub(crate) unsafe extern "C" fn sleep(
    seconds: crate::binary::c_types::c_uint,
) -> crate::binary::c_types::c_uint {
    trace!("sleep");

    usleep(seconds * 1_000);
    0
}

/// Implementation of usleep() from newlib in esp-idf.
/// components/newlib/time.c
#[no_mangle]
unsafe extern "C" fn usleep(us: u32) -> crate::binary::c_types::c_int {
    trace!("usleep");
    extern "C" {
        fn esp_rom_delay_us(us: u32);
    }
    esp_rom_delay_us(us);
    0
}

#[no_mangle]
unsafe extern "C" fn putchar(c: i32) -> crate::binary::c_types::c_int {
    trace!("putchar {}", c as u8 as char);
    c
}